首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   4篇
晶体学   1篇
物理学   69篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   5篇
  2014年   3篇
  2013年   6篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
排序方式: 共有70条查询结果,搜索用时 16 毫秒
61.

The structural, morphological, magnetic, dielectric, and gas analyzing properties are studied in CuFe2O4(Mn–CuFe2O4) substituted spinel ferrite nanoparticles synthesized via evaporation and automatic combustion. The obtained nanoparticles are established to possess a spherical shape. The smallest size of Mn–CuFe2O4 (~9 nm) nanoparticles is achieved at using automatic combustion. X-ray diffraction and Mössbauer spectroscopy reveal that the crystal lattice constant and the Mn–CuFe2O4 nanoparticle size are larger at augmenting the annealing temperature from 600 to 900°С. The dielectric permeability and losses of Mn–CuFe2O4 nanoparticles are studied at various synthesis conditions and temperatures of annealing. Various aspects of gas sensibility of synthesized Mn–CuFe2O4 nanoparticles are tested, as well. The maximum response to the presence of liquefied petroleum gas is 0.28 at the optimum working temperature of 300°C for Mn–CuFe2O4 nanoparticles obtained via automatic combustion and it is 0.23 at 250°C for deposited nanoparticles.

  相似文献   
62.
Investigations of the magnetic state of a surface layer ~200 nm thick and of the bulk in macroscopic ferrite crystals of the type Ba-M (BaFe12O19) are performed in the phase transition region around the Curie temperature (T c). The method of simultaneous gamma, x-ray, and electron Mössbauer spectroscopy, which made it possible to compare directly the phase states of the surface and bulk of the sample, is used for the measurements. It is observed experimentally that in BaFe12O19 the transition of a surface layer ~200 nm thick to the paramagnetic state occurs at temperatures below T c. It is established that the transition temperature T c(L) of a thin layer localized at depth L from the surface of the crystal increases with distance from the surface and reaches the value T c at the lower boundary of the “critical” surface layer. Therefore, near T c a nonuniform state in which the crystal is magnetically ordered in the bulk but disordered at the surface is observed. A phase diagram of the states of the surface and of the bulk of macroscopic magnets near the Curie (or Néel) point is proposed on the basis of all the experimental results obtained in the present work as well as previously published results.  相似文献   
63.
Direct comparative studies are made between the magnetic structures of a surface layer of thickness ~40 nm and the bulk magnetic structure of ferromagnetic single crystals of hexagonal M ferrites (BaFe12O19, SrFe12O19, PbFe12O19) with a magneto-plumbite structure. Measurements are made by simultaneous gamma, x-ray, and electron Mössbauer spectroscopy in order to investigate the properties of the surface layer and the bulk crystal simultaneously. Experimental data obtained with a depth resolution of ~ 10 nm show that the orientation of the magnetic moments of the iron ions (along the crystallographic c axis) does not change on approaching the surface from the crystal volume. Thus, to within an experimental error of ~ 10 nm, single crystals of the hexagonal ferrites BaFe12O19, SrFe12O19, and PbFe12O19 with a ferromagnetic structure do not have a “ transition” surface layer whose magnetic structure differs from that of the bulk crystal such as that which exists, with a depth of several hundred nm, in antiferromagnetic materials with weak ferromagnetism.  相似文献   
64.
A technique of simultaneous gamma-ray, x-ray, and electron Mössbauer spectroscopy is used to study the magnetic structure of the surface layer with direct comparison to the magnetic structure inside single crystal samples of hexagonal Ba-M ferrites, in which part of the iron ions have been replaced by diamagnetic Sc ions (chemical formula BaFe12?δ ScδO9). It is found that when the diamagnetic Sc ions are introduced into the crystal lattice of BaFe12?δ ScδO19 at concentrations (x=0.4 and 0.6) far below the level at which the collinear magnetic structure inside the sample is destroyed, a macroscopic layer of thickness ~300 nm develops on the surface, in which the magnetic moments of the iron ions are oriented noncollinearly with respect to the moments inside the sample. The deviation 〈θ〉 of the magnetic moments in BaFe11.6Sc0.4O19 was 10° ± 62° for x=0.4, and when the Sc concentration was raised to 0.6, the angle 〈θ〉 increased to 17° ± 62°. The noncollinear magnetic structure in the surface layer in these crystals develops because of further reduction in the energy of the exchange interactions owing to the presence of a “defect,” such as the surface. For the first time, therefore, an anisotropic surface layer whose magnetic properties differ from those in the interior of a sample has been observed experimentally in ferromagnetic crystals, as predicted by Néel [L. Néel, Phys. Radium. 15, 225 (1954)].  相似文献   
65.
Nanodispersive powder of a zinc-substituted magnetite was developed. Functional characteristics (biocompatibility, dispersity, magnetic state) allow us to recommend it for approbation in medical and biological applications. The nature of the investigated field dependencies of magnetization indicates that for particles of 3–13 nm, a superparamagnetic state is realized at room temperature, reflecting the specificity of the small particles’ magnetism.  相似文献   
66.
The magnetic properties of the surface layer and bulk of iron-garnet films of composition Y2.6Sm0.4Fe3.7Ga1.3O12, grown by liquid-phase epitaxy on substrates of a gadolinium-gallium garnet single crystal, are investigated. The method of simultaneous gamma-ray, x-ray, and electron Mössbauer spectroscopy is used for the investigations. It is found that the temperature T c(L) of the transition to the paramagnetic state of a thin layer localized at a depth L below the surface within ~300 nm decreases smoothly with decreasing distance from the surface. The causes of the difference between the temperature of the transition to the paramagnetic state in the surface layer and that bulk of the film are: 1) variation of the degree of substitution of gallium for iron in the surface layer; 2) weakening of exchange interactions at the surface of the sample.  相似文献   
67.
An FeBO3 single crystal was studied from 291 K up to the Neel temperature T(N) = 348.35 K by depth selective conversion electron Mossbauer spectroscopy in ultrahigh vacuum (10(-9) mbar). A new magnetic near-surface phase was found. Its thickness D diverges on approaching T(N) and gives a critical exponent for the correlation length of nu = 0.59(4). The phase boundary between the bulk and near-surface phase could be identified.  相似文献   
68.
用磁控射频溅射法制备了FeCoAlON薄膜, 研究了Al-O和N元素的添加对FeCo合金薄膜的软磁性的影响. 研究结果表明: 随着Al, O, N元素添加量的增加, 薄膜微结构从多晶转化到纳米晶再转化到非晶态, 薄膜表现为软磁性; 在N的含量较高时, 薄膜呈现条形畴结构, 本文对条形畴结构出现的机理和条件作了详细讨论, 并发现具有条形畴结构的薄膜的磁导率频率特性具有多峰共振的特点. 关键词: 铁钴基合金 薄膜 条形畴  相似文献   
69.
Calcium hexagonal ferrite in the form of a system of nanocrystals has been synthesizes using elements of cryochemical technology for the first time. The obtained ensemble of particles corresponds to the model Stoner-Wohlfarth system according to the following characteristics: the phase composition, the shape of the basic magnetization curve, and the coercive force. The temperature dependences of the magnetization in the range 300–700 K at fixed values of the magnetic field indicate the presence of a transition to the super-paramagnetic (SPM) state. The boundary temperatures T BH (1) and T BH 2 of the range of the SPM transition have been determined, and the role of the external magnetic field, which stimulates the transition in this process in accordance with the theory, has been confirmed.  相似文献   
70.
The process of aging of ceramic carbonized hydroxyapatite (CHA) produced in a dry carbon dioxide atmosphere at temperatures of 800–1200°C has been studied by chemical and X-ray structural analysis, infrared spectroscopy, and scanning electron microscopy methods. The phase composition and structure of initial prepared ceramics samples and those aged for a year have been compared. It has been shown that relaxation of internal stresses occurring during pressed sample sintering causes plastic deformation of crystallites at room temperature, accompanied by redistribution of carbonate ions between A1, A2, B1, and B2 sites and CHA decomposition with the formation of CaO separations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号