An analysis is made of the influence of the spatial dispersion of LO phonons and the exciton effect on the energy spectrum of magnetopolarons in a quantum well. It is shown that in optical experiments where light is incident normally on the plane of the quantum well, a discrete spectrum of magnetopolarons is observed. Both the phonon dispersion and the Coulomb attraction of an electron and a hole may lead to a shift of the discrete magnetopolaron energy levels and additional contributions to the broadening of various levels. 相似文献
In the optical multicast network, node and link failures have very important influence on the network survivability which may lead to multiple destinations cannot receive data. Based on the wavelength layered-graph method, a method of efficiency-score based on heuristic algorithm of pre-configured cycle (p-Cycle) based-segment protection (ESHS) for dynamic multicast with limited-range wavelength conversion was presented in this paper. By finding the multicast tree segment protection, the total available p-Cycles are constructed for the multicast. Then we calculate each p-Cycle efficiency-score, the highest efficient-score p-Cycle is selected as the multicast route protection p-Cycle. The simulation results show that the ESHS can get higher performance than the existing ESHT algorithm, in terms of multicast request blocking probability and wavelength utilization. 相似文献
In this paper, two fault tolerant authenticated quantum dialogue (AQD) protocols against the collective-dephasing noise and the collective-rotation noise are constructed, respectively, by using logical qubits and controlled-not (CNOT) operations. The proposed protocols can accomplish the mutual identity authentications between two communicants before decoding and overcome the information leakage problem. The quantum measurements throughout the proposed protocols can be simplified into the single-photon measurements. Moreover, they have the information-theoretical efficiency as high as 50%. Different from the recent fault tolerant QD protocols generating two adjacent logical qubits in the same state, the proposed protocols do not have this special requirement.
Energy splitting ΔEres in double magnetopolaron energy spectrum in rectangular quantum wells as functions of the well width d have been calculated. We have considered in the capacity of interaction leading to resonant coupling between electrons and phonons the interaction with confined phonons and (for comparison) with bulk LO phonons. We have obtained the conditions when the interaction with bulk phonons yields correct results. Calculations for AlAs/GaAs/AlAs and AlSb/InSb/AlSb structures have been performed. Alongside the parameter ΔEres for a polaron, whose resonant magnetic field is determined by the condition Ω=ωL1, where Ω is the cyclotron frequency and ωL1 is the LO phonon frequency in the quantum well (A-polaron), we have calculated ΔEres for D-(Ω=2ωL1) and F-polarons (Ω=3ωL1), which is a factor of $\sqrt 2 $ and $\sqrt 3 $ , respectively, smaller than ΔEres for the A-polaron. Since the splitting ΔEres for the A-polaron is very large (up to 0.2?ωL1), it is more convenient to study in experiments D-and F-polarons since their resonant magnetic fields are lower. We have predicted existence of “weak” magnetopolarons, in which the splitting is proportional to a higher power of Frölich’s coupling constant α than α1/2. 相似文献
To obtain electrostatic charge dissipative (ESD) materials, high-density polyethylene (HDPE) and polyaniline (PANI) blends are synthesized by the solution blending method. To prepare the blends, 0.5, 1.0, and 3.0 wt% of PANI are introduced into the HDPE matrix. The prepared blends are investigated by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA), and scanning electron microscope (SEM). Additionally, stress–strain curves are used to examine the blends' mechanical properties. Polyaniline additions indicated an increase in thermal stability by approximately 1°C in the blends but decrease in mechanical properties. The four-probe technique is used to determine the electrical conductivity of blends, which is found to be between 10−7 and 10−10 S/cm. The results of the conductivity values have indicated that all blends have great potential to be used as antistatic materials. For antistatic applications, the ESD performance of the blends is determined at different corona voltages. Blends achieved the antistatic requirements with a 10% cutoff decay time of approximately 2.0 s and a 1/e time of approximately 1.0 s, demonstrating quick dissipation of static charges. According to antistatic decay times, it has been shown that all blends obtained in this study can be used as antistatic material at 3 kV corona voltage. 相似文献
Polycyclic aromatic hydrocarbons with hexagons/pentagons or hexagons/heptagons have been intensively investigated in recent years, but those with simultaneous presence of hexagons, pentagons and heptagons remain rare. In this paper, we report dicyclohepta[ijkl,uvwx]rubicene ( DHR ), a non-benzenoid isomer of dibenzo[bc,kl]coronene with two pentagons and two heptagons. We developed an efficient and scalable synthetic method for DHR by using Scholl reaction and dehydrogenation. Crystal structure of DHR shows that the benzenoid rings, two pentagons and two heptagons are coplanar. The bond lengths analysis and the ICSS(1)zz and LOL-π calculations indicate that the incorporation of two formal azulene moieties has an effect on the conjugated structure. The π-electrons of benzenoid and pentagon rings are more delocalized. Cyclic voltammetry studies indicate that DHR shows multiple oxidation and reduction potentials. Interestingly, DHR exhibits unusual S0 to S2 absorption and abnormal anti-Kasha S2 to S0 emission. Moreover, crystals of DHR exhibit semiconducting behaviour with hole mobility up to 0.082 cm2 V−1 s−1. 相似文献