首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477篇
  免费   40篇
化学   411篇
晶体学   7篇
力学   1篇
数学   3篇
物理学   95篇
  2022年   3篇
  2021年   2篇
  2020年   6篇
  2019年   5篇
  2018年   6篇
  2017年   3篇
  2016年   10篇
  2015年   16篇
  2014年   14篇
  2013年   21篇
  2012年   19篇
  2011年   41篇
  2010年   23篇
  2009年   15篇
  2008年   36篇
  2007年   35篇
  2006年   30篇
  2005年   31篇
  2004年   31篇
  2003年   20篇
  2002年   24篇
  2001年   14篇
  2000年   15篇
  1999年   8篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   4篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   8篇
  1980年   4篇
  1979年   3篇
  1978年   5篇
  1977年   8篇
  1976年   2篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1967年   3篇
排序方式: 共有517条查询结果,搜索用时 15 毫秒
21.
The INDO calculations were performed on bicyclo[2.1.1]hex-5-yl radical. From these calculations, it was confirmed that the hyperfine coupling constants depend largely on the geometry of the α hydrogen. The localized MO's were obtained from the canonical MO's calculated by using the INDO method. With the use of the localized MO's thus obtained, the variation in the hyperfine coupling constants at the 6exo- and 6endo-protons in this radical was explained in terms of the through-bond and/or the through-space interactions according to the procedure which we proposed previously. That is by the procedure we can selectively pick up a particular interaction between the specified localized MO's. The hyperfine coupling constant in this radical can be expressed by the summation of several interaction terms. The difference in the hyperfine spin coupling constants of the H6exo and H6endo in the radical now concerned has been attempted to explain using MO coefficients of the occupied orbitals.  相似文献   
22.
Detailed investigation on the origin of the acidity of the alpha-protons of a set of the carbonyl molecules was carried out on the basis of properties of the localized molecular orbital. An anomalously high acidity of Meldrum's acid, as compared with those of dimedone and dimethyl malonate, is one of the well-known but unresolved issues. The well-localized sigma orbitals of the C-H bonds at the alpha-position of the carbonyl groups can be obtained with the reactive hybrid orbital (RHO) theory. We found that the energy levels of the unoccupied RHOs of the C-H moiety of Meldrum's acid and other carbonyl compounds showed a good linear correlation with the experimental deprotonation energies. This is probably because the deprotonation reaction to form the proposed naked anions in a polar solvent is a highly endothermic process, in which the thermodynamic energy differences between the neutral molecules and the corresponding anions approximately coincide with the activation energies. We also investigated the effect of the conformational change upon deprotonation on the electron-accepting energy level of the relevant C-H bonds of cyclic/acyclic and monocarbonyl/dicarbonyl compounds. A conformational change occurs in the cases of cyclic six-membered compounds, but its influence on the reactivity of the C-H bond is small. The acidity of dicarbonyl compounds, including Meldrum's acid, showed a good correlation with the deviations from the perpendicular position of the dihedral angles of the relevant C-H bond with respect to the adjacent carbonyl C=O bond. This angle parameter can be related to the magnitude of the in-phase orbital interaction between the sigma(CH) and pi(C)(=)(O) orbitals, which facilitate electron acceptance. These results indicated that the acidity of the alpha-proton of carbonyl compounds can be represented in terms of the electron-accepting orbital levels of the unoccupied RHO of the C-H moiety. All the linear relationships found in the present work strongly suggested that the acidity of Meldrum's acid, which is conventionally regarded as an anomaly, is consistent with those of the other carbonyl compounds.  相似文献   
23.
Mesoporous titanium dioxide nanosized powder with high specific surface area and anatase wall was synthesized via hydrothermal process by using cetyltrimethylammonium bromide (CTAB) as surfactant-directing agent and pore-forming agent. The resulting materials were characterized by XRD, nitrogen adsorption, FESEM, TEM, and FT-IR spectroscopy. The as-synthesized mesoporous TiO2 nanoparticles have mean diameter of 17.6 nm with mean pore size of 2.1 nm. The specific surface area of the as-synthesized mesoporous nanosized TiO2 exceeded 430 m2/g and that of the samples after calcination at 600 degrees C still have 221.9 m2/g. The mesoporous TiO2 nanoparticles show significant activities on the oxidation of Rhodamine B (RB). The large surface area, small crystalline size, and well-crystallized anatase mesostructure can explain the high photocatalytic activity of mesoporous TiO2 nanoparticles calcined at 400 degrees C.  相似文献   
24.
The mechanism for the activation of the sigma bonds, the O-H of H2O, C-H of CH4, and the H-H of H2, and the pi bonds, the C[triple bond]C of C2H2, C=C of C2H4, and the C=O of HCHO, at the Pd=X (X = Sn, Si, C) bonds of the model complexes (H2PC2H4PH2)Pd=XH2 5 has been theoretically investigated using a density functional method (B3LYP). The reaction is significantly affected by the electronic nature of the Pd=X bond, and the mechanism is changed depending on the atom X. The activation of the O-H bond with the lone pair electron is heterolytic at the Pd=X (X = Sn, Si) bonds, while it is homolytic at the Pd=C bond. The C-H and H-H bonds without the lone pair electron are also heterolytically activated at the Pd=X bonds independent of the atom X, where the hydrogen is extracted as a proton by the Pd atom in the case of X = Sn, Si and by the C atom in the case of X=C because the nucleophile is switched between the Pd and X atoms depending on the atom X. In contrast, the pi bond activation of C[triple bond]C and C=C at the Pd=Sn bond proceeds homolytically, and is accompanied by the rotation of the (H2PC2H4PH2)Pd group around the Pd-Sn axis to successfully complete the reaction by both the electron donation from the pi orbital to Sn p orbital and the back-donation from the Pd dpi orbital to the pi orbital. On the other hand, the activation of the C=O pi bond with the lone pair electron at the Pd=Sn bond has two reaction pathways: one is homolytic with the rotation of the (H2PC2H4PH2)Pd group and the other is heterolytic without the rotation. The role of the ligands controlling the activation mechanism, which is heterolytic or homolytic, is discussed.  相似文献   
25.
trans-Stilbene, 1, 1-diphenylethylene, and α-methylstyrene were allowed to react with dibenzylmagnesium to form their oligomers in hexamethylphosphortriamide (HMPA). One and two molecules of stilbene and 1, 1-diphenylethylene were incorporated into the magnesium carbon bond, and the carbanions obtained in HMPA were stable in analogy with the anionic living polymer having alkali cation as the gegenion in eithers. Intense coloration was observed during the reaction between α-methylstyrene and dibenzylmagnesium as well as in the case of stilbene and 1, 1-diphenylethylene. The low molecular weight products which were formed after a long time in the reaction between α-methylstyrene and dibenzylmagnesium were found to have no magnesium-carbon bond. It was considered that the cleavage of the propagating chain occurred gradually after the rapid propagation had proceeded to consume the monomer.  相似文献   
26.
This review describes an outline of dipeptide-induced chirality organization by using molecular scaffolds. A variety of ferrocene-dipeptide conjugates as bioorganometallics are designed to induce chirality-organized structures of peptides. The ferrocene serves as a reliable organometallic scaffold with a central reverse-turn unit for the construction of protein secondary structures via intramolecular hydrogen bondings, wherein the attached dipeptide strands are constrained within the appropriate dimensions. Another interesting feature of ferrocene-dipeptide conjugates is their strong tendency to self-assemble through contribution of available hydrogen bonding sites for helical architectures in solid states. Symmetrical introduction of two dipeptide chains into a urea molecular scaffold is performed to induce the formation of the chiral hydrogen-bonded duplex, wherein each hydrogen-bonded duplex is connected by continuous intermolecular hydrogen bonds to form a double helix-like arrangement.  相似文献   
27.
The quality of starch‐containing foods may be significantly impaired by contamination with very small amounts of α‐amylase, which can enzymatically hydrolyze the starch and cause viscosity loss. Thus, for quality control, it is necessary to have an analytical method that can measure low amylase activity. We developed a sensitive analytical method for measuring the activity of α‐amylase (from Bacillus subtilis) in starch‐containing foods. The method consists of six steps: (1) crude extraction of α‐amylase by centrifugation and filtration; (2) α‐amylase purification by desalting and anion‐exchange chromatography; (3) reaction of the purified amylase with boron‐dipyrromethene (BODIPY)‐labeled substrate, which releases a fluorescent fragment upon digestion of the substrate, thus avoiding interference from starch derivatives in the sample; (4) stopping the reaction with acetonitrile; (5) reversed‐phase solid‐phase extraction of the fluorescent substrate to remove contaminating dye and impurities; and (6) separation and measurement of BODIPY fluorescence by HPLC. The proposed method could quantify α‐amylase activities as low as 10 mU/mL, which is enough to reduce the viscosity of starch‐containing foods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
28.
The first enantioselective tungstate‐catalyzed oxidation reaction is presented. High enantioselectivities were achieved for a variety of drug‐like phenyl and heterocyclic sulfides under mild conditions with H2O2, a cheap and environmentally friendly oxidant. Synthetic utility was demonstrated through the preparation of (S)‐Lansoprazole, a commercial proton‐pump inhibitor. The active ion‐pair catalyst was identified to be bisguanidinium diphosphatobisperoxotungstate using Raman spectroscopy and computational studies.  相似文献   
29.
Self-assembly of porphyrins is a fascinating topic, not only for mimicking chlorophyll assemblies in photosynthetic organisms, but also for the potential of creating molecular-level devices. Herein, zinc porphyrin derivatives bearing a meta-pyridyl group at the meso position were prepared and their assemblies studied in chloroform. Among the porphyrins studied, one with a carbamoylpyridyl moiety gave a distinct 1H NMR spectrum in CDCl3, which allowed the supramolecular structure in solution to be probed in detail. Ring-current-induced chemical-shift changes in the 1H NMR spectrum, together with vapor-pressure osmometry and diffusion-ordered NMR spectroscopy, among other evidence, suggested that the porphyrin molecules form a trimer with a triangular cone structure. Incorporation of a directly linked porphyrin–ferrocene dyad with the same assembling properties in the assemblies led to a rare example of a light-harvesting/charge-separation system in which an energy gradient is incorporated and reductive quenching occurs.  相似文献   
30.
Abstract

N,N-Dimethyl-, diethyl-, and dipropylacrylamides were polymerized with 1,1-bis(4′-trimethylsilylphenyl)-3-methylpentyllithium (I) in the presence and absence of diethylzinc in THF. Although the polymers produced with I in the absence of diethylzinc have rather broad molecular weight distributions, the addition of diethylzinc to the polymerization systems causes narrow molecular weight distributions of the polymers. The addition of diethylzinc also affect the stereospecificities of the polymers obtained. The poly(N,N-diethylacrylamide) produced with I/diethylzinc (molar ratio of 1/3-15) is highly syndiotactic, while the one obtained with I is isotactic. The configuration of the poly(N,N-dimethylacrylamide) is changed from isotactic to syndio and heterotactic rich by the addition of diethylzinc to the polymerization mixture. Little effect of diethylzinc is observed on the stereospecificity of the polymerization of N,N-dipropylacrylamide. The stoichiometric additive effect of Et2Zn toward the initiator in the polymerization of DEAA suggests that the coordination of Et2Zn aggregates with the propagating carbanionic species narrows the molecular weight distribution and controls the tacticity of the polymer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号