首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   833篇
  免费   22篇
  国内免费   1篇
化学   522篇
晶体学   9篇
力学   21篇
数学   34篇
物理学   270篇
  2021年   9篇
  2020年   9篇
  2019年   5篇
  2018年   5篇
  2017年   4篇
  2016年   17篇
  2015年   10篇
  2014年   14篇
  2013年   33篇
  2012年   28篇
  2011年   37篇
  2010年   23篇
  2009年   15篇
  2008年   32篇
  2007年   41篇
  2006年   26篇
  2005年   40篇
  2004年   46篇
  2003年   18篇
  2002年   23篇
  2001年   19篇
  2000年   52篇
  1999年   9篇
  1998年   8篇
  1997年   7篇
  1996年   6篇
  1995年   15篇
  1994年   19篇
  1993年   15篇
  1992年   16篇
  1991年   22篇
  1990年   5篇
  1989年   9篇
  1988年   8篇
  1987年   11篇
  1986年   10篇
  1985年   16篇
  1984年   11篇
  1983年   13篇
  1982年   12篇
  1981年   5篇
  1980年   9篇
  1979年   9篇
  1978年   16篇
  1977年   7篇
  1976年   17篇
  1975年   15篇
  1974年   12篇
  1973年   5篇
  1923年   4篇
排序方式: 共有856条查询结果,搜索用时 15 毫秒
151.
152.
The current study investigated the physiological effects of flavonoids found in daily consumed rooibos tea, aspalathin, isoorientin, and orientin on improving processes involved in mitochondrial function in C2C12 myotubes. To achieve this, C2C12 myotubes were exposed to a mitochondrial channel blocker, antimycin A (6.25 µM), for 12 h to induce mitochondrial dysfunction. Thereafter, cells were treated with aspalathin, isoorientin, and orientin (10 µM) for 4 h, while metformin (1 µM) and insulin (1 µM) were used as comparators. Relevant bioassays and real-time PCR were conducted to assess the impact of treatment compounds on some markers of mitochondrial function. Our results showed that antimycin A induced alterations in the mitochondrial respiration process and mRNA levels of genes involved in energy production. In fact, aspalathin, isoorientin, and orientin reversed such effects leading to the reduced production of intracellular reactive oxygen species. These flavonoids further enhanced the expression of genes involved in mitochondrial function, such as Ucp 2, Complex 1/3, Sirt 1, Nrf 1, and Tfam. Overall, the current study showed that dietary flavonoids, aspalathin, isoorientin, and orientin, have the potential to be as effective as established pharmacological drugs such as metformin and insulin in protecting against mitochondrial dysfunction in a preclinical setting; however, such information should be confirmed in well-established in vivo disease models.  相似文献   
153.
Our group has progressively reported on the impact of bioactive compounds found in rooibos (Aspalathus linearis) and their capacity to modulate glucose homeostasis to improve metabolic function in experimental models of type 2 diabetes. In the current study, we investigated how the dietary flavone, orientin, modulates the essential genes involved in energy regulation to enhance substrate metabolism. We used a well-established hepatic insulin resistance model of exposing C3A liver cells to a high concentration of palmitate (0.75 mM) for 16 hrs. These insulin-resistant liver cells were treated with orientin (10 µM) for 3 h to assess the therapeutic effect of orientin. In addition to assessing the rate of metabolic activity, end point measurements assessed include the uptake or utilization of glucose and palmitate, as well as the expression of genes involved in insulin signaling and regulating cellular energy homeostasis. Our results showed that orientin effectively improved metabolic activity, mainly by maintaining substrate utilization which was marked by enhanced glucose and palmitate uptake by liver cells subjected to insulin resistance. Interestingly, these effects can be explained by the improvement in the expression of genes involved in glucose transport (Glut2), insulin signaling (Irs1 and Pi3k), and energy regulation (Ampk and Cpt1). These preliminary findings lay an important foundation for future research to determine the bioactive properties of orientin against dyslipidemia or insulin resistance in reliable and well-established models of type 2 diabetes.  相似文献   
154.
We have measured the 4He(e, ep)3H reaction at missing momenta of 130-300 MeV/c using the three-spectrometer facility at the Mainz microtron MAMI. Data were taken in perpendicular kinematics to allow us to determine the response function RLT and the asymmetry term ATL. The data are compared to both relativistic and non-relativistic calculations.  相似文献   
155.
Diabetes, a prevalent metabolic condition with a wide range of complications, is fast becoming a global health crisis. Herbal medicine and enhanced extracts are some of the therapeutic options used in the management of diabetes mellitus. The plant-derived molecules and their suitable structure modification have given many leads or drugs to the world such as metformin used as an antidiabetic drug. The stem extract of Sclerocarya birrea has been reported as a potent antidiabetic (glucose uptake) agent. However, the bioactive compounds have not been reported from S. birrea for treatment of diabetes. In this study, the spray-dried aqueous leaf extracts of S. birrea were investigated as an antidiabetic agent using a 2-deoxy-glucose (2DG) technique showing good stimulatory effect on glucose uptake in differentiated C2C12 myocytes with % 2DG uptake ranging from 110–180% that was comparable to the positive control insulin. Three compounds were isolated and identified using bioassay-guided fractionation of the spray-dried aqueous extract of S. birrea leaves: myricetin (1), myricetin-3-O-β-D-glucuronide (2) and quercetin-3-O-β-D-glucuronide (3). Their chemical structures were determined using NMR and mass spectrometric analyses, as well as a comparison of experimentally obtained data to those reported in the literature. The isolated compounds (1–3) were studied for their stimulatory actions on glucose uptake in differentiated C2C12 myocytes. The three compounds (1, 2 and 3) showed stimulatory effects on the uptake of 2DG in C2C12 myocytes with % 2DG uptake ranging from 43.9–109.1% that was better compared to the positive control insulin. Additionally, this is the first report of the flavonoid glycosides (myricetin-3-O-β-D-glucuronide) for antidiabetic activity and they are the main bioactive compound in the extract responsible for the antidiabetic activity. This result suggests that the S. birrea leaves have the potential to be developed for treatment of diabetes.  相似文献   
156.
The present work proposes an experimental methodology to characterize the unsteady properties of a wind turbine wake, called meandering, and particularly its ability to follow the large-scale motions induced by large turbulent eddies contained in the approach flow. The measurements were made in an atmospheric boundary layer wind tunnel. The wind turbine model is based on the actuator disc concept. One part of the work has been dedicated to the development of a methodology for horizontal wake tracking by mean of a transverse hot wire rake, whose dynamic response is adequate for spectral analysis. Spectral coherence analysis shows that the horizontal position of the wake correlates well with the upstream transverse velocity, especially for wavelength larger than three times the diameter of the disc but less so for smaller scales. Therefore, it is concluded that the wake is actually a rather passive tracer of the large surrounding turbulent structures. The influence of the rotor size and downstream distance on the wake meandering is studied. The fluctuations of the lateral force and the yawing torque affecting the wind turbine model are also measured and correlated with the wake meandering. Two approach flow configurations are then tested: an undisturbed incoming flow (modelled atmospheric boundary layer) and a disturbed incoming flow, with a wind turbine model located upstream. Results showed that the meandering process is amplified by the presence of the upstream wake. It is shown that the coherence between the lateral force fluctuations and the horizontal wake position is significant up to length scales larger than twice the wind turbine model diameter. This leads to the conclusion that the lateral force is a better candidate than the upstream transverse velocity to predict in real time the meandering process, for either undisturbed (wake free) or disturbed incoming atmospheric flows.  相似文献   
157.
Polystyrene-poly(ethylene glycol) resin-captured cross-linked palladium nanopaticles were prepared via a straightforward route, and their heterogeneous behavior was truly confirmed by various tests. They were applied to aqueous Suzuki cross-coupling reactions with various aryl bromides and recycled up to six times without loss of activity.  相似文献   
158.
Since the discovery of the Phillips catalysts, there still is much uncertainty concerning their activation, their molecular structure, the nature of the active chromium sites, and the polymerization mechanisms. Surface techniques are not easy to be used for such study according to the nonconductive behavior of the support. Therefore, model Phillips catalyst is elaborated by spin coating a trivalent chromium precursor on a silicon wafer. The surface characterization of this model catalyst is conducted by laser ablation mass spectrometry (LA-MS), laser desorption/ionization mass spectrometry (LDI-MS), and static secondary ion mass spectrometry (s-SIMS), at different steps of its preparation. To validate our approach, a comparison is also made between the model and the real Philips catalyst. Moreover, the model catalyst efficiency for polyethylene synthesis is evaluated and allows us to discuss the validity of the mechanisms previously proposed to explain the catalytic process. The characterization of Phillips model catalyst by mass spectrometry allows us to better understand the activation processes of such catalyst. Depending on the activation temperature, chromium oxide species are formed and anchored at the support surface. They consist mainly in mono-chromium sites at high temperature. The chromium valence is hexavalent. This model catalyst is active for the polymerization of ethylene. A pseudo-oligomer molecular weight distribution is observed by LA-MS, whereas s-SIMS allows us to elucidate the anchorage of the polymer at activate chromium surface sites.  相似文献   
159.
The mechanism of the direct insertion of molecular oxygen into a palladium hydride bond has been elucidated using quantum mechanics (B3LYP/LACVP** with the PBF continuum solvent model). The key step is found to be the abstraction of the hydrogen atom resulting in the formation of a PdI/HO2 (triplet) radical pair, which then proceeds to form a singlet palladium hydroperoxo species. Potential palladium(0) pathways were explored and were found to be inaccessible. The results are in agreement with recent experimental results and are consistent with our previously predicted mechanism for an analogue system.  相似文献   
160.
Non-linear resonant ultrasound spectroscopy (NRUS) is a technique exploiting the significant non-linear behavior of damaged materials, related to the presence of damage. This study shows for the first time the feasibility of this technique for damage assessment in bone. Two samples of bovine cortical bone were subjected to a progressive damage experiment. Damage accumulation was progressively induced in the samples by mechanical testing. For independent assessment of damage, X-ray CT imaging was performed at each damage step, but only helped in the detection of the prominent cracks. Synchrotron micro-CT imaging and histology using epifluorescence microscopy were performed in one of the two samples at the last damage step and allowed detection of micro-cracks for this step. As the quantity of damage accumulation increased, NRUS revealed a corresponding increase in the non-linear response. The measured change in non-linear response is much more sensitive than the change in elastic modulus. The results suggest that NRUS could be a potential tool for micro-damage assessment in bone. Further work has to be carried out for a better understanding of the physical nature of damaged bone, and for the ultimate goal of in vivo implementation of the technique where bone access will be a challenging problem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号