首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282311篇
  免费   3701篇
  国内免费   1054篇
化学   155662篇
晶体学   4711篇
力学   11436篇
综合类   22篇
数学   29579篇
物理学   85656篇
  2021年   2280篇
  2020年   2673篇
  2019年   2857篇
  2018年   3146篇
  2017年   3134篇
  2016年   5200篇
  2015年   3531篇
  2014年   5396篇
  2013年   12806篇
  2012年   10518篇
  2011年   12882篇
  2010年   8719篇
  2009年   8584篇
  2008年   11608篇
  2007年   11106篇
  2006年   10602篇
  2005年   9592篇
  2004年   8639篇
  2003年   7768篇
  2002年   7421篇
  2001年   8792篇
  2000年   6706篇
  1999年   5059篇
  1998年   4018篇
  1997年   3961篇
  1996年   3750篇
  1995年   3396篇
  1994年   3258篇
  1993年   2996篇
  1992年   3806篇
  1991年   3686篇
  1990年   3513篇
  1989年   3394篇
  1988年   3420篇
  1987年   3458篇
  1986年   3206篇
  1985年   4304篇
  1984年   4253篇
  1983年   3298篇
  1982年   3488篇
  1981年   3454篇
  1980年   3202篇
  1979年   3580篇
  1978年   3587篇
  1977年   3690篇
  1976年   3476篇
  1975年   3146篇
  1974年   3096篇
  1973年   2959篇
  1972年   1993篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Microporous poly(vinylidene fluoride) (PVdF) separators for lithium-ion batteries, used in liquid organic electrolytes, have been characterized with respect to the swelling phenomena on dense PVdF membranes (obtained through hot pressing). In the first and second parts of this study, we have described the swelling equilibria and swelling kinetics of dense PVdF. Here the thermal properties of PVdF gels and their irreversible modifications induced by swelling are characterized. Particular attention is paid to crystallinity modifications, polymer plasticization, and membrane degradation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2308–2317, 2004  相似文献   
52.
In this work, preparation and properties of different nanoclays modified by organic amines (octadecyl amine, a primary amine, and hexadecyltrimethylammonium bromide, a tertiary amine) and brominated polyisobutylene‐co‐paramethylstyrene (BIMS)‐clay nanocomposites are reported. The clays and the rubber nanocomposites have been characterized with the help of Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X‐ray diffraction (XRD). The X‐ray diffraction peaks observed in the range of 3 °–10 ° for the modified clays disappear in the rubber nanocomposites. TEM photographs show predominantly exfoliation of the clays in the range of 12 ± 4 nm in the BIMS. In the FTIR spectra of the nanocomposites, there are common peaks of virgin rubber as well as those of the clays. Excellent improvement in mechanical properties like tensile strength, elongation at break, and modulus is observed on incorporation of the nanoclays in the BIMS. Structure‐property correlation in the above nanocomposites is attempted. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4489–4502, 2004  相似文献   
53.
Syndiotactic polystyrene (sPS) has various crystalline forms such as α, β, γ, and δ forms, and a mesophase depending on the preparation method. In this study, we focused on the mesophase with the molecular cavity of sPS, which is obtained by step‐wise extraction of the guest molecules from the sPS δ form. To prepare the mesophase containing different shapes and sizes of the cavity, two kinds of the sPS δ form membrane cast from either toluene or chloroform solution were first prepared and then the guest molecules were removed by a step‐wise extraction method using acetone and methanol. We could succeed in the preparation of two kinds of mesophase with different shapes and sizes of the molecular cavity. Either toluene or chloroform vapor sorption to the sPS mesophase membranes was examined at 25 °C. Sorption analysis indicates that the mesophase with large molecular cavities can mainly sorb large molecules; on the other hand, the mesophase with small cavities can sorb only the small molecules, and is unable to sorb a large amount of large molecule because the cavity was too small to sorb the large molecules. Therefore, the sPS mesophase membrane has sorption selectivity based on the size of the molecular cavity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 238–245, 2004  相似文献   
54.
According to a multiphase mixture theory, we have mathematically developed a multiphysical model with chemoelectromechanical coupling considerations, termed the multieffect‐coupling electric‐stimulus (MECe) model, to simulate the responsive behavior of electric‐sensitive hydrogels immersed in a bath solution under an externally applied electric field. For solutions of the MECe model consisting of coupled nonlinear partial differential governing equations, a meshless Hermite–Cloud method with a hierarchical iteration technique has been used for a one‐dimensional steady‐state analysis of a hydrogel strip. The computed results are compared with the experimental data, and there is very good agreement. Simulations within the domains of both hydrogels and surrounding solutions also present distributions of the ionic concentrations and electric potential as well as the hydrogel displacement. The effects of various physical parameters on the response behavior of electric‐stimulus responsive hydrogels are discussed in detail. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1514–1531, 2004  相似文献   
55.
Some discovery work was done on the synthesis of clay nanocomposites based on renewable plant oils. Functionalized triglycerides, such as acrylated epoxidized soybean oil, maleinized acrylated epoxidized soybean oil, and soybean oil pentaerythritol maleates, combined with styrene were used as the polymer matrix. The miscibility of these monomers and clay organomodifier was assessed by solubility parameters. The formation of nanocomposites was confirmed by both X‐ray data and transmission electron microscopy. The morphology showed a mix of intercalated and partially exfoliated sheets. The flexural modulus increased 30% at only 4 vol % clay content, but there was no significant effect on flexural strength, glass‐transition temperature, and thermal stability. Property enhancement was related to the degree of exfoliation that depends on both the polarity and flexibility of the monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1441–1450, 2004  相似文献   
56.
Aiming to develop a high‐performance fiber‐reinforced rubber from styrene–butadiene rubber (SBR), we applied a special technique using electron‐beam (EB)‐irradiation‐induced graft polymerization to ultrahigh‐molecular‐weight‐polyethylene (UHMWPE) fibers. The molecular interaction between the grafted UHMWPE fibers and an SBR matrix was studied through the evaluation of the adhesive behavior of the fibers in the SBR matrix. Although UHMWPE was chemically inert, two monomers, styrene and N‐vinyl formamide (NVF), were examined for graft polymerization onto the UHMWPE fiber surface. Styrene was not effective, but NVF was graft‐polymerized onto the UHMWPE fibers with this special method. A methanol/water mixture and dioxane were used as solvents for NVF, and the effects of the solvents on the grafting percentage of NVF were also examined. The methanol/water mixture was more effective. A grafting percentage of 16.4% was the highest obtained. This improved the adhesive force threefold with respect to that of untreated UHMWPE fibers. These results demonstrated that EB irradiation enabled graft polymerization to occur even on the inert surface of UHMWPE fibers. However, the mechanical properties of the fibers could be compromised according to the dose of EB irradiation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2595–2603, 2004  相似文献   
57.
Cyanex 923 has been proposed as a sensitive analytical reagent for the direct extractive spectrophotometric determination of cobalt(II). Cobalt(II) forms a blue-colored complex with Cyanex 923 in the organic phase. The maximum absorbance of the complex is measured at 635 nm. Beer's law was obeyed in the range 58.9 - 589.0 microg of cobalt. The molar absorptivitiy and Sandell's sensitivity of the complex was calculated to be 6.79 x 10920 l mol(-1) cm(-1) and 0.088 microg cm(-2), respectively. The nature of the extracted species was found to be Co(SCN)2 x 2S. An excellent linearity with a correlation coefficient value of 0.999 was obtained for the Co(II)-Cyanex 923 complex. Stability and regeneration of the reagent (Cyanex 923) for reuse is the main advantage of the present method. The method was successfully applied to the determination of cobalt in synthetic mixtures and pharmaceutical samples was found to give values close to the actual ones. Standard alloy samples, such as high-speed tool BCS 484 and 485, have been tested for the determination of cobalt for the purpose of validating the present method. The results of the proposed method are comparable with atomic absorption spectrometry and were found to be in good agreement.  相似文献   
58.
59.
Crystals of Saccharomyces cerevisiae inorganic pyrophosphatase suitable for X-ray diffraction study were grown by cocrystallization of the enzyme with cobalt chloride and imidodiphosphate. Saccharomyces cerevisiae is a metal-dependent enzyme which catalyzes hydrolysis of inorganic pyrophosphate to orthophosphate. The three-dimensional structure of this enzyme was solved by the molecular-replacement method and refined at 1.8 Å resolution to an R factor of 19.5%. Cobalt and phosphate ions were revealed in the active centers of both identical subunits (A and B) of the pyrophosphatase molecule. In subunit B, a water molecule was found between two cobalt ions. It is believed that this water molecule acts as an attacking nucleophile in the enzymatic cleavage of the pyrophosphate bond. It was demonstrated that cobalt ions and a phosphate group occupy only part of the potential binding sites (two chemically identical and crystallographically independent subunits have different binding sites). The arrangement of ligands and the structure of the nucleophile-binding site are discussed in relation to the mechanism of action of the enzyme and the nature of the metal activator.  相似文献   
60.
For three‐dimensional flows with one inhomogeneous spatial coordinate and two periodic directions, the Karhunen–Loeve procedure is typically formulated as a spatial eigenvalue problem. This is normally referred to as the direct method (DM). Here we derive an equivalent formulation in which the eigenvalue problem is formulated in the temporal coordinate. It is shown that this so‐called method of snapshots (MOS) has some numerical advantages when compared to the DM. In particular, the MOS can be formulated purely as a matrix composed of scalars, thus avoiding the need to construct a matrix of matrices as in the DM. In addition, the MOS avoids the need for so‐called weight functions, which emerge in the DM as a result of the non‐uniform grid typically employed in the inhomogeneous direction. The avoidance of such weight functions, which may exhibit singular behaviour, guarantees satisfaction of the boundary conditions. The MOS is applied to data sets recently obtained from the direct simulation of turbulence in a channel in which viscoelasticity is imparted to the fluid using a Giesekus model. The analysis reveals a steep drop in the dimensionality of the turbulence as viscoelasticity is increased. This is consistent with the results that have been obtained with other viscoelastic models, thus revealing an essential generic feature of polymer‐induced drag reduced turbulent flows. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号