首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   16篇
  国内免费   5篇
化学   129篇
晶体学   3篇
力学   2篇
数学   2篇
物理学   10篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   5篇
  2014年   10篇
  2013年   11篇
  2012年   10篇
  2011年   7篇
  2010年   11篇
  2009年   12篇
  2008年   9篇
  2007年   9篇
  2006年   6篇
  2005年   5篇
  2004年   7篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1996年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1975年   1篇
  1964年   2篇
排序方式: 共有146条查询结果,搜索用时 93 毫秒
11.
A screen‐printed silver strip with a built‐in three‐in‐one electrode (SPAgE) configuration of Ag‐working, Ag‐counter and Ag/AgxO (silver oxides) pseudoreference electrodes has been developed for sensitive and selective electrochemical flow injection analysis (FIA) of aluminum chlorohydrate (ACH) present in antiperspirants, through the free Cl? ion liberated from ACH in aqueous medium, as a redox signal at Ag‐working electrode in pH 6 phosphate buffer solution (PBS). The solution phase and instrumental parameters were systematically optimized. The calibration graph was linear in the window 1–200 ppm concentration of ACH and the lowest detection limit (S/N=3) was 295 ppb with a slope of 0.0989 μA/ppm and regression coefficient of 0.998. Calculated relative standard deviation (RSD) values for the detection of 5 and 50 ppm ACH by this method are 2.21 % and 2.16 %, respectively. Four different antiperspirant deodorants real samples with and without ACH content were successfully analyzed and the detected values obtained were found to be in good agreement with the product labeled values.  相似文献   
12.
13.
The thermal and flow transport in an inductively heated Czochralski crystal growth furnace during a crystal growth process is investigated numerically. The temperature and flow fields inside the furnace, coupled with the heat generation in the iridium crucible induced by the electromagnetic field generated by the RF coil, are computed. The results indicate that for an RF coil fixed in position during the growth process, although the maximum value of the magnetic, temperature and velocity fields decrease, the convexity of the crystal‐melt interface increases for longer crystal growth lengths. The convexity of the crystal‐melt interface and the power consumption can be reduced by adjusting the relative position between the crucible and the induction coil during growth. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
14.
A series of highly organosoluble polyamides with high modulus having propeller‐shaped triarylamine were synthesized using aromatic diacid chlorides by low‐temperature solution polycondensation. The polyamide films had strong, tough, flexible, and amorphous properties. These polymers revealed electrochromic characteristics both in the visible range and near‐infrared (NIR) region, with a color change from pale yellowish at its neutral state to green and blue at its oxidized state at applied potentials ranging from 0.00 to 1.35 V. Cyclic voltammetry (CV) of the polymer films cast onto an indium tin oxide (ITO)‐coated glass substrate exhibited two reversible redox couples at potentials of 0.80–0.87 V and 1.19–1.25 V, respectively, vs. Ag/Ag+ in acetonitrile solution. From the combination of the experimental and computational study, we proposed an oxidation mechanism based on molecular orbital (MO) theory, which well explains the CV experimental result. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   
15.
A new class of proton‐conducting polymer was developed via the sol–gel process from amino‐containing organic–inorganic hybrids by the treatment of poly(allylamine) with 3‐glycidoxypropyltrimethoxysilane doped with ortho‐phosphoric acid. The polymer matrix contains many hydrophilic sites and consists of a double‐crosslinked framework of polysiloxane and amine/epoxide. Differential scanning calorimetry results suggest that hydrogen bonding or electrostatic forces are present between H3PO4 and the amine nitrogen, resulting in an increase in the glass‐transition temperature of the poly(allylamine) chain with an increasing P/N ratio. The 31P magic‐angle spinning NMR spectra indicate that three types of phosphate species are involved in the proton conduction, and the motional freedom of H3PO4 is increased with increasing P/N ratios. The conductivity above 80 °C does not drop off but increases instead. Under a dry atmosphere, a high conductivity of 10?3 S/cm at temperatures up to 130 °C has been achieved. The maximum activation energy obtained at P/N = 0.5 suggests that a transition of proton‐conducting behavior exits between Grotthus‐ and vehicle‐type mechanisms. The dependence of conductivity on relative humidity (RH) above 50% is smaller for H3PO4‐doped membranes compared with H3PO4‐free ones. These hybrid polymers have characteristics of low water content (23 wt %) and high conductivity (10?2 S/cm at 95% RH), making them promising candidates as electrolytes for fuel cells. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3359–3367, 2005  相似文献   
16.
Renewable energy sources are highly sought after as a result of numerous worldwide problems concerning the environment and the shortage of energy. Currently, the focus in the field is on the development of catalysts that are able to provide water splitting catalysis and energy storage for the hydrogen evolution reaction (HER). While platinum is an excellent material for HER catalysis, it is costly and rare. In this work, we investigated the electrocatalytic abilities of various graphene–metal hybrids to replace platinum for the HER. The graphene materials were doped with 4f metals, namely, iridium, osmium, platinum and rhenium, as well as 3d metals, namely, cobalt, iron and manganese. We discovered that a few hybrids, in particular iridium‐ and osmium‐doped graphenes, have the potential to become competent electrocatalysts owing to their low costs and—more importantly—to their promising electrochemical performances towards the HER. One of the more noteworthy observations of this work is the superiority of these two hybrids over MoS2, a well‐known electrocatalyst for the HER.  相似文献   
17.
This study analyzed variations of tribological behaviors that depend on the injection molding techniques during the blending of short glass fiber (SGF) and polytetrafluoroethylene (PTFE) reinforced polycarbonate (PC) composites. The proposed planning of blending experiments is to use a D‐optimal mixture design (DMD). The tribological behaviors of friction coefficient and wear mass loss were selected for discussion. Nine experimental runs, based on a DMD method, utilized to train the back‐propagation neural network (BPNN) and then the simulated annealing algorithm (SAA) approach is applied to search for an optimal mixture ratio setting. In addition, the result of BPNN integrating SAA was also compared with response surface methodology (RSM) approach. The results of confirmation experiment show that DMD, RSM, and BPNN integrating SAA method are effective tools for the optimization of reinforced process. Furthermore, the scanning electron microscope (SEM) images show that the abundant debris are peeled off from the matrix materials and predominant delamination mechanisms and plastic deformation are shown on the worn surface after tribological behavior tests. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
18.
This work prepared poly(ethylene glycol‐co‐1,3/1,4‐cyclohexanedimethanol terephthalate) (PETG)/organoclay nanocomposites via a melt intercalation process and investigated the influences of organoclay aspect ratio and organoclay content on the dispersed state, mechanical, thermal, gas barrier, and heat recovery properties of PETG/organoclay nanocomposites. X‐ray diffraction (XRD) and transmission electron microscopic analyses showed that the organoclay dispersed in the polymer matrix with intercalation in the nanometer scale range. Differential scanning calorimetry (DSC) analysis demonstrated that all of the obtained nanocomposites were amorphous, indicating that the addition of organoclay did not affect the amorphous nature of PETG. The gas barrier properties of the nanocomposites improved with organoclay content and the properties were also affected by the organoclay aspect ratio. Water vapor and oxygen transmission rates (OTRs) of PETG/organoclay nanocomposites containing 3 phr Cloisite 15A, and 3 phr modified polymer grade Na‐montmorillonites (MPGN) were the lowest among the samples tested, and were 41.7 and 44.3%, respectively, of those of neat PETG. Similar organoclay content‐ and aspect ratio‐related effects were observed in the mechanical and heat recovery properties of the tested nanocomposites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
19.
An aerosol charge analyzer has been constructed to measure the charge distribution of NaCl particles generated in the laboratory. A radioactive electrostatic charge neutralizer utilizing Po‐210 was used to neutralize the electrostatic charge of the particles. The atomization technique was used to generate NaCl particles with diameters of 0.2 to 0.8 μm, while the evaporation and condensation method was adopted to generate particles of 0.01 to 0.2 μm in diameter. The experimental data demonstrates that the absolute average particle charge depends on the particle diameter, and is higher than that calculated by the Boltzmann charge equilibrium for particles within the range of 0.2 to 0.8 μm. The charge increases with decreasing NaCl concentration. When these particles are neutralized using the Po‐210 neutralizer, it is found that the electrostatic charge reaches the Boltzmann charge equilibrium. For 0.01 to 0.2 μm NaCl particles generated using the evaporation and condensation method, test results show that the absolute average particle charge is higher than that calculated by the Boltzmann charge equilibrium for particles larger than 0.03 to 0.05 μm in diameter, while it is lower than that predicted by the Fuchs theory [1], for particles smaller than 0.03 to 0.05 μm. However, after charge neutralization, particles with diameter above 0.05 μm reach the Boltzmann charge equilibrium condition, and the charges for particles with diameters of 0.010 to 0.05 μm, agree well with Fuchs' theory.  相似文献   
20.
Increasing the stability of perovskite solar cells is one of the most important tasks in the photovoltaic industry. Thus, the structural, energetic, and electronic properties of pure CH3NH3PbI3 and fully doped compounds (CH3NH3PbBr3 and CH3NH3PbCl3) in cubic and tetragonal phases were investigated using density functional theory calculations. We also considered the effects of mixed halide perovskites CH3NH3PbI2X (where X = Br and Cl) and compared their properties with CH3NH3PbI3. The DFT results indicate that the phase transformation from tetragonal to cubic phase decreases the band gap. The calculated results show that the X‐site ion plays a vital role in the geometrical stability and electronic levels. An increase in the band gap and a reduction in the lattice constants are more apparent in CH3NH3PbI2X compounds (I > Br > Cl).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号