首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20942篇
  免费   3413篇
  国内免费   2388篇
化学   14500篇
晶体学   208篇
力学   1526篇
综合类   196篇
数学   2320篇
物理学   7993篇
  2024年   69篇
  2023年   401篇
  2022年   708篇
  2021年   800篇
  2020年   831篇
  2019年   797篇
  2018年   679篇
  2017年   586篇
  2016年   968篇
  2015年   1016篇
  2014年   1159篇
  2013年   1528篇
  2012年   1788篇
  2011年   1962篇
  2010年   1247篇
  2009年   1190篇
  2008年   1218篇
  2007年   1127篇
  2006年   1117篇
  2005年   929篇
  2004年   832篇
  2003年   613篇
  2002年   571篇
  2001年   504篇
  2000年   455篇
  1999年   431篇
  1998年   380篇
  1997年   323篇
  1996年   335篇
  1995年   319篇
  1994年   299篇
  1993年   232篇
  1992年   247篇
  1991年   205篇
  1990年   180篇
  1989年   152篇
  1988年   91篇
  1987年   89篇
  1986年   75篇
  1985年   75篇
  1984年   42篇
  1983年   44篇
  1982年   37篇
  1981年   22篇
  1980年   15篇
  1979年   8篇
  1977年   5篇
  1975年   6篇
  1969年   4篇
  1957年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
63.
64.
A simple, selective, and sensitive method for the simultaneous determination of anions (sulfate, nitrate, and chloride) and cations (sodium, ammonium, potassium, magnesium, and calcium) in acid rain waters was developed using ion-exclusion/ cation-exchange chromatography with conductimetric detection. A weakly acidic cation-exchange resin column (Tosho TSKgel OA-PAK-A) and a sulfosalicylic acid-methanol-water eluent was used. With a mobile phase comprising 1.25 mM sulfosalicylic acid in methanol-water (7.5:92.5) at 1.2 ml/min, simultaneous separation and detection of the above anions and cations was achieved in about 30 min. Linear calibration plots of peak area versus concentration were obtained over the concentration ranges 0-1.0 mM for anions (R=0.9991) and 0-0.5 mM for cations (R=0.9994). Detection limits calculated at S/N=3 ranged from 4.2 to 14.8 ppb for the anions and from 2.4 to 12.1 ppb for the cations. The reproducibility of retention times was 0.14-0.15% relative standard deviation (RSD) for anions and 0.18-0.31% for cations, and reproducibility of chromatographic peak areas was 1.22-1.75% RSD for anions and 1.81-2.10% for cations. The method was applied successfully to the simultaneous determination of anions and cations in aerosols transported from mainland China to central Japan, as determined by a meteorological satellite data analyzer.  相似文献   
65.
Great progress has been made in basic features of the potential energy landscape (PEL) theoretically. The present work, however, attempts to cast new light on it from experimental aspects. By a survey of experimental data related to thermodynamics or dynamics of metallic glass-forming liquids, it is found that the increased rate of excitation of vibrational entropy at glass transition tends to increase the rate of generation of configurational part. Although for the type of metallic materials a generally positive relationship exists between the density of the energy minima at glass transition and the liquid fragility strength, just as expected, our main attention is paid to the phenomenon of the scattering of the slopes. Analysis shows that the phenomenon results from the different average height of energy barriers between minima near glass transition. Investigation on the PdNiP metallic system indicates that the mismatch entropy is a dominant factor in the barrier height: a large value of it results in low energy barriers. Our previous work on the AlNiCe system gives the support to this finding.  相似文献   
66.
将氯化重氮苯的溶液加入氯化汞、维生素C、丙酮和少量氯化铜的混合物中,得到80%的氯化苯汞;如在反应混合物中补加维生素C、氯化铜和浓氨水,则得到二苯汞。用同样的方法制备了其他的二芳基汞,并讨论了反应可能的机理。  相似文献   
67.
The photoinduced reactions of the complexes Mg+-SCNC2H5 and Mg+-NCSC2H5 are studied comparatively in the spectral range of 230-440 nm. One-photon excitation of the complexes through the Mg+ chromophore (3 2P <-- 3 2S) gives rise to the evaporative fragment as well as the molecular activation and charge transfer products. The action spectra of the complexes consist of three broad peaks for Mg+-SCNC2H5 and two for Mg+-NCSC2H5, which accord with the structures obtained from quantum mechanics calculations. These calculations reveal two association isomers for Mg+-SCNC2H5: one is with Mg+ being linked to the S atom and the other to the N atom. The former is more stable than the latter by only 0.23 eV. Both of the isomers have been shown to exist in the complex source employed in our experiments. On the other hand, only one stable structure is found for the complex Mg+-NCSC2H5 characterized by the Mg+-N linkage. In general, the photofragments are dominated by Mg+ at lambda > 400 nm, which decreases with decreasing wavelength accompanied by the increase in other photoproducts. In addition, the branching ratios of Mg+ to other photoproducts are nearly constant in the short wavelength region but decrease with decreasing wavelength. The observed photoreactions have been reasonably explained.  相似文献   
68.
The novel versatile cobalt(I) tris-carbene complex [(TIMEN(xyl))Co]Cl (1) (where TIMEN = (tris[2-(3-arylimidazol-2-ylidene)ethyl]amine) reacts with CO, one-electron oxidizers such as CH(2)Cl(2), and O(2) to yield the cobalt complexes [(TIMEN(xyl))Co(CO)]Cl (2), [(TIMEN(xyl))Co(Cl)]Cl (3), and peroxo species [(TIMEN(xyl))Co(O(2))](BPh(4)) (5). All new complexes were fully characterized by (1)H NMR, UV/vis, and IR spectroscopy as well as superconducting quantum interference device (SQUID) magnetization measurements and single-crystal X-ray crystallography. The nucleophilic character of the eta(2)-bound dioxygen ligand in 5 was confirmed by density functional theory (DFT) studies and allows for oxygen-transfer reactions with electron-deficient organic substrates, such as benzoyl chloride.  相似文献   
69.
The transient directing group (TDG) strategy allowed long awaited access to the direct β-C(sp3)–H functionalization of unmasked aliphatic aldehydes via palladium catalysis. However, the current techniques are restricted to terminal methyl functionalization, limiting their structural scopes and applicability. Herein, we report the development of a direct Pd-catalyzed methylene β-C–H arylation of linear unmasked aldehydes by using 3-amino-3-methylbutanoic acid as a TDG and 2-pyridone as an external ligand. Density functional theory calculations provided insights into the reaction mechanism and shed light on the roles of the external and transient directing ligands in the catalytic transformation.

Aliphatic aldehydes are among the most common structural units in organic and medicinal chemistry research. Direct C–H functionalization has enabled efficient and site-selective derivatization of aliphatic aldehydes.

Simple aliphatic functional groups enrich the skeletal backbones of many natural products, pharmaceuticals, and other industrial materials, influencing the utility and applications of these substances and dictating their reactivity and synthetic modification pathways. Aliphatic aldehydes are some of the most ubiquitous structural units in organic materials.1 Their relevance in nature and industry alike, combined with their reactivity and synthetic versatility, attracted much attention from the synthetic organic and medicinal chemistry communities over the years (Fig. 1).2 Efficient means to the functionalization of these molecules have always been highly sought after.Open in a separate windowFig. 1Select aliphatic aldehyde-containing medicines and biologically active molecules.Traditionally, scientists have utilized the high reactivity of the aldehyde moiety in derivatizing a variety of functional groups by the means of red-ox and nucleophilic addition reactions. The resourceful moiety was also notoriously used to install functional groups at the α-position via condensation and substitution pathways.3 Although β-functionalization is just as robust, it has generally been more restrictive as it often requires the use of α,β-unsaturated aldehydes.4,5 Hence, transition metal catalysis emerged as a powerful tool to access β-functionalization in saturated aldehydes.6 Most original examples of metal-catalyzed β-C–H functionalization of aliphatic aldehydes required the masking of aldehydes into better metal coordinating units since free unmasked aldehydes could not form stable intermediates with metals like palladium on their own.7 Although the masking of the aldehyde moiety into an oxime, for example, enabled the formation of stable 5-membered palladacycles, affording β-functionalized products, this system requires the installation of the directing group prior to the functionalization, as well as the subsequent unmasking upon the reaction completion, compromising the step economy and atom efficiency of the overall process.8 Besides, some masking and unmasking protocols might not be compatible with select substrates, especially ones rich in functional groups. As a result, the development of a one-step direct approach to the β-C–H functionalization of free aliphatic aldehydes was a demanding target for synthetic chemists.α-Amino acids have been demonstrated as effective transient directing groups (TDGs) in the remote functionalization of o-alkyl benzaldehydes and aliphatic ketones by the Yu group in 2016.9 Shortly after, our group disclosed the first report on the direct β-C–H arylation of aliphatic aldehydes using 3-aminopropanoic acid or 3-amino-3-methylbutanoic acid as a TDG.10 The TDG was found to play a similar role to that of the oxime directing group by binding to the substrate via reversible imine formation, upon which, it assists in the assembly of a stable palladacycle, effectively functionalizing the β-position.11 Since the binding of the TDG is reversible and temporary, it is automatically removed upon functionalization, yielding an efficient and step-economic transformation. This work was succeeded by many other reports that expanded the reaction and the TDG scopes.12–14 However, this system suffers from a significant restriction that demanded resolution; only substitution of methyl C–H bonds of linear aldehydes was made possible via this approach (Scheme 1a–e). The steric limitations caused by incorporating additional groups at the β-carbon proved to compromise the formation of the palladacycle intermediate, rendering the subsequent functionalization a difficult task.12Open in a separate windowScheme 1Pd-catalyzed β-C–H bond functionalization of aliphatic aldehydes enabled by transient directing groups.Encouraged by the recent surge in use of 2-pyridone ligands to stabilize palladacycle intermediates,15,16 we have successfully developed the first example of TDG-enabled Pd-catalyzed methylene β-C–H arylation in primary aldehydes via the assistance of 2-pyridones as external ligands (Scheme 1f). The incorporation of 2-pyridones proved to lower the activation energy of the C–H bond cleavage, promoting the formation of the intermediate palladacycles even in the presence of relatively bulky β-substituents.17 This key advancement significantly broadens the structural scopes and applications of this process and promises future asymmetric possibilities, perhaps via the use of a chiral TDG or external ligand or both. Notably, a closely related work from Yu''s group was published at almost the same time.18We commenced our investigation of the reaction parameters by employing n-pentanal (1a) as an unbiased linear aldehyde and 4-iodoanisole (2a) in the presence of catalytic Pd(OAc)2 and stoichiometric AgTFA, alongside 3-amino-3-methylbutanoic acid (TDG1) and 3-(trifluoromethyl)-5-nitropyridin-2-ol (L1) at 100 °C (ii) sources proved Pd(OAc)2 to be the optimal catalyst, while Pd(TFA)2, PdCl2 and PdBr2 provided only moderate yields (entries 10–12). Notably, a significantly lower yield was observed in the absence of the 2-pyridone ligand, and no desired product was isolated altogether in the absence of the TDG (entries 13 and 14). The incorporation of 15 mol% Pd catalyst was deemed necessary after only 55% yield of 3a was obtained when 10 mol% loading of Pd(OAc)2 was instead used (entry 15).Optimization of reaction conditionsa
EntryPd sourceL (mol%)TDG1 (mol%)Solvent (v/v, mL)Yield (%)
1Pd(OAc)2L1 (30)TDG1 (40)HFIP30
2Pd(OAc)2L1 (30)TDG1 (40)AcOH<5
3Pd(OAc)2L1 (30)TDG1 (40)HFIP/AcOH (1 : 1)28
4Pd(OAc)2L1 (30)TDG1 (40)HFIP/AcOH (9 : 1)47
5Pd(OAc)2L1 (30)TDG1 (40)HFIP/AcOH (1 : 9)<5
6Pd(OAc)2L1 (30)TDG1 (60)HFIP/AcOH (9 : 1)50
7Pd(OAc)2L1 (30)TDG1 (80)HFIP/AcOH (9 : 1)25
8Pd(OAc)2L1 (60)TDG1 (60)HFIP/AcOH (9 : 1)70(68)b
9Pd(OAc)2L1 (75)TDG1 (60)HFIP/AcOH (9 : 1)51
10Pd(TFA)2L1 (60)TDG1 (60)HFIP/AcOH (9 : 1)60
11PdCl2L1 (60)TDG1 (60)HFIP/AcOH (9 : 1)52
12PdBr2L1 (60)TDG1 (60)HFIP/AcOH (9 : 1)54
13Pd(OAc)2TDG1 (60)HFIP/AcOH (9 : 1)9
14Pd(OAc)2L1 (60)HFIP/AcOH (9 : 1)0
15cPd(OAc)2L1 (60)TDG1 (60)HFIP/AcOH (9 : 1)55
Open in a separate windowaReaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), Pd source (15 mol%), AgTFA (0.3 mmol), L1, TDG1, solvent (2.0 mL), 100 °C, 12 h. Yields are based on 1a, determined by 1H-NMR using dibromomethane as an internal standard.bIsolated yield.cPd(OAc)2 (10 mol%).To advance our optimization of the reaction conditions, a variety of 2-pyridones and TDGs were tested (Scheme 2). Originally, pyridine-2(1H)-one (L2) was examined as the external ligand, but it only yielded the product (3a) in 7% NMR yield. Similarly, other mono- and di-substituted 2-pyridone ligands (L3–L10) also produced low yields, fixating L1 as the optimal external ligand. Next, various α- and β-amino acids (TDG1–10) were evaluated, yet TDG1 persisted as the optimal transient directing group. These amino acid screening results also suggest that a [5,6]-bicyclic palladium species is likely the key intermediate in this protocol since only β-amino acids were found to provide appreciable yields, whereas α-amino acids failed to yield more than trace amounts of the product. The supremacy of TDG1 when compared to other β-amino acids is presumably due to the Thorpe–Ingold effect that perhaps helps facilitate the C–H bond cleavage and stabilize the [5,6]-bicyclic intermediate further.Open in a separate windowScheme 2Optimization of 2-pyridone ligands and transient directing groups.With the optimized reaction conditions in hand, substrate scope study of primary aliphatic aldehydes was subsequently carried out (Scheme 3). A variety of linear primary aliphatic aldehydes bearing different chain lengths provided the corresponding products 3a–e in good yields. Notably, relatively sterically hindered methylene C–H bonds were also functionalized effectively (3f and 3g). Additionally, 4-phenylbutanal gave rise to the desired product 3h in a highly site-selective manner, suggesting that functionalization of the methylene β-C–H bond is predominantly favored over the more labile benzylic C–H bond. It is noteworthy that the amide group was also well-tolerated and the desired product 3j was isolated in 60% yield. As expected, with n-propanal as the substrate, β-mono- (3k1) and β,β-disubstituted products (3k2) were isolated in 22% and 21% yields respectively. However, in the absence of the key external 2-pyridone ligand, β-monosubstituted product (3k1) was obtained exclusively, albeit with a low yield, indicating preference for functionalizing the β-C(sp3)–H bond of the methyl group over the benzylic methylene group.Open in a separate windowScheme 3Scope of primary aliphatic aldehydes. Reaction conditions: 1 (0.2 mmol), 2a (0.4 mmol), Pd(OAc)2 (15 mol%), AgTFA (0.3 mmol), L1 (60 mol%), TDG1 (60 mol%), HFIP (1.8 mL), HOAc (0.2 mL), 100 °C, 12 h. Isolated yields. aL1 (60 mol%) was absent and yields are given in parentheses.Next, substrate scope study on aryl iodides was surveyed (Scheme 4). Iodobenzenes bearing either an electron-donating or electron-withdrawing group at the para-, meta-, or ortho-position were all found compatible with our catalytic system (3l–3ah). Surprisingly, ortho-methyl- and fluoro-substituted aryl iodides afforded the products in only trace amounts. However, aryl iodide with ortho-methoxy group provided the desired product 3ac in a moderate yield. Notably, a distinctive electronic effect pattern was not observed in the process. It should be mentioned that arylated products bearing halogen, ester, and cyano groups could be readily converted to other molecules, which significantly improves the synthetic applicability of the process. Delightfully, aryl iodide-containing natural products like ketoprofen, fenchol and menthol were proven compatible, supplying the corresponding products in moderate yields. Unfortunately, (hetero)aryl iodides including 2-iodopyridine, 3-iodopyridine, 4-iodopyridine and 4-iodo-2-chloropyridine failed to produce the corresponding products. Although our protocol provides a novel and direct pathway to construct β-arylated primary aliphatic aldehydes, the yields of most examples are modest. The leading reasons for this compromise are the following: (1) aliphatic aldehydes are easily decomposed or oxidized to acids; (2) some of the prepared β-arylated aldehyde products may be further transformed into the corresponding α,β-unsaturated aldehydes.Open in a separate windowScheme 4Scope of aryl iodides. Reaction conditions: 1a (0.2 mmol), 2 (0.4 mmol), Pd(OAc)2 (15 mol%), AgTFA (0.3 mmol), L1 (60 mol%), TDG1 (60 mol%), HFIP (1.8 mL), HOAc (0.2 mL), 100 °C, 12 h. Isolated yields.Density functional theory (DFT) calculations were performed to help investigate the reaction mechanism and to elucidate the role of the ligand in improving the reactivity (Fig. 2). The condensation of the aliphatic aldehyde 1a with the TDG to form imine-1a was found thermodynamically neutral (ΔG° = −0.1 kcal mol−1). As a result, it was permissible to use imine-1a directly in the calculations. According to the calculations results, the precatalyst [Pd(OAc)2]3, a trimeric complex, initially experiences dissociation and ligand metathesis with imine-1a to generate the Pd(ii) intermediate IM1, which is thermodynamically favorable by 21.9 kcal mol−1. Consequently, the deprotonated imine-1a couples to the bidentate ligand to form the stable six-membered chelate complex IM1. Therefore, IM1 is indeed the catalyst resting state and serves as the zero point to the energy profile. We have identified two competitive pathways for the Pd(ii)-catalyzed C–H activation starting from IM1, one of which incorporates L1 and another which does not. On the one hand, an acetate ligand substitutes one imine-1a chelator in IM1 to facilitate the subsequent C–H activation leading to IM2, which undergoes C(sp3)–H activation through concerted metalation-deprotonation (CMD) viaTS1 (ΔG = 37.4 kcal mol−1). However, this kinetic barrier is thought to be too high to account for the catalytic activity at 100 °C. On the other hand, the chelate imine-1a could be replaced by two N-coordinated ligands (L1) leading to the Pd(ii) complex IM3. This process is endergonic by 6.4 kcal mol−1. To allow the ensuing C–H activation, IM3 dissociates one ligand (L1) producing the active species IM4, which undergoes TS2 to cleave the β-C(sp3)–H bond and form the [5,6]-bicyclic Pd(ii) intermediate IM5. Although this step features an energy barrier of 31.2 kcal mol−1, it is thought to be feasible under the experimental conditions (100 °C). Possessing similar coordination ability to that of pyridine, the ligand (L1) effectively stabilizes the Pd(ii) center in the C–H activation process, indicating that this step most likely involves a manageable kinetic barrier. This result explicates the origin of the ligand-enabled reactivity (TS2vs.TS1). Additionally, we considered the γ-C(sp3)–H activation pathway viaTS2′ which was found to have a barrier of 35.5 kcal mol−1. The higher energy barrier of TS2′ compared to that of TS2 is attributed to its larger ring strain in the [6,6]-bicyclic Pd(ii) transition state, which reveals the motive for the site-selectivity. Reverting back to the supposed pathway, upon the formation of the bicyclic intermediate IM5, it undergoes ligand/substrate replacement to afford intermediate IM6, at which the Ar–I coordinates to the Pd(ii) center to enable oxidative addition viaTS3 (ΔG = 27.4 kcal mol−1) leading to the five-coordinate Pd(iv) complex IM7. Undergoing direct C–C reductive elimination in IM7 would entail a barrier of 29.6 kcal mol−1 (TS4). Alternatively, iodine abstraction by the silver(i) salt in IM7 is thermodynamically favorable and irreversible, yielding the Pd(iv) intermediate IM8 coordinated to a TFA ligand. Subsequently, C–C reductive coupling viaTS5 generates the Pd(ii) complex IM9 and concludes the arylation process. This step was found both kinetically facile (6.1 kcal mol−1) and thermodynamically favorable (30.7 kcal mol−1). Finally, IM9 reacts with imine-1avia metathesis to regenerate the palladium catalyst IM1 and release imine-3a in a highly exergonic step (21.0 kcal mol−1). Ultimately, imine-3a undergoes hydrolysis to yield the aldehyde product 3a and to release the TDG.Open in a separate windowFig. 2Free energy profiles for the ligand-promoted Pd(ii)-catalyzed site-selective C–H activation and C–C bond formation, alongside the optimized structures of the C–H activation transition states TS1 and TS2 (selected bond distances are labelled in Å). Energies are relative to the complex IM1 and are mass-balanced.  相似文献   
70.
The Piezo channel family, including Piezo1 and Piezo2, includes essential mechanosensitive transduction molecules in mammals. Functioning in the conversion of mechanical signals to biological signals to regulate a plethora of physiological processes, Piezo channels, which have a unique homotrimeric three-blade propeller-shaped structure, utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways. Piezo channels have a wide range of biological roles in various human systems, both in vitro and in vivo. Currently, there is a lack of comprehensive understanding of their antagonists and agonists, and therefore further investigation is needed. Remarkably, increasingly compelling evidence demonstrates that Piezo channel function in the urinary system is important. This review article systematically summarizes the existing evidence of the importance of Piezo channels, including protein structure, mechanogating mechanisms, and pharmacological characteristics, with a particular focus on their physiological and pathophysiological roles in the urinary system. Collectively, this review aims to provide a direction for future clinical applications in urinary system diseases.Subject terms: Bladder disease, Bladder cancer, Prostate cancer, Oncogenesis  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号