首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   535篇
  免费   6篇
  国内免费   3篇
化学   317篇
晶体学   9篇
力学   9篇
数学   62篇
物理学   147篇
  2022年   9篇
  2021年   8篇
  2019年   6篇
  2018年   5篇
  2016年   7篇
  2015年   6篇
  2014年   8篇
  2013年   16篇
  2012年   21篇
  2011年   30篇
  2010年   9篇
  2009年   15篇
  2008年   21篇
  2007年   27篇
  2006年   22篇
  2005年   12篇
  2004年   23篇
  2003年   12篇
  2002年   10篇
  2001年   8篇
  2000年   9篇
  1999年   10篇
  1998年   6篇
  1997年   9篇
  1996年   14篇
  1995年   15篇
  1994年   19篇
  1993年   19篇
  1992年   22篇
  1991年   8篇
  1990年   10篇
  1989年   6篇
  1988年   10篇
  1987年   5篇
  1986年   5篇
  1985年   14篇
  1984年   5篇
  1983年   6篇
  1982年   8篇
  1981年   10篇
  1980年   4篇
  1979年   5篇
  1978年   5篇
  1977年   10篇
  1976年   8篇
  1975年   8篇
  1974年   3篇
  1973年   4篇
  1972年   3篇
  1909年   2篇
排序方式: 共有544条查询结果,搜索用时 515 毫秒
101.
The scope and limitations of direct arylation of fluorinated aromatics with aryl sulfonates was examined. Pd(OAc)(2), in the presence of MePhos and KOAc in THF, efficiently catalyzed the direct arylation of fluoro aromatics with aryl triflates under ambient conditions. Sterically hindered triflates and heteroaryl triflates gave good to excellent yields of the cross coupled products using a modified catalyst system which involves Pd(OAc)(2)-RuPhos at 100 °C. The direct arylation of electron deficient arenes with aryl mesylates is also established using Pd(OAc)(2)-SPhos as the catalyst in toluene-(t)BuOH at 120 °C.  相似文献   
102.
Iogen Corporation of Ottawa, Canada, has recently built a 50 t/d biomass-to-ethanol demonstration plant adjacent to its enzyme production facility. Iogen has partnered with the University of Toronto to test the C6/C5 cofermentation performance characteristics of National Renewable Energy Laboratory's metabolically engineered Zymomonas mobilis using its biomass hydrolysates. In this study, the biomass feedstock was an agricultural waste, namely oat hulls, which was hydrolyzed in a proprietary two-stage process involving pretreatment with dilute sulfuric acid at 200–250°C, followed by cellulase hydrolysis. The oat hull hydrolysate (OHH) contained glucose, xylose, and arabinose in a mass ratio of about 8:3:0.5. Fermentation media, prepared from diluted hydrolysate, were nutritionally amended with 2.5 mL/L of corn steep liquor (50% solids) and 1.2 g/L of diammonium phosphate. The estimated cost for large-scale ethanol production using this minimal level of nutrient supplementation was 4.4c/gal of ethanol. This work examined the growth and fermentation performance of xyloseutilizing, tetracycline-resistant, plasmid-bearing, patented, recombinant Z. mobilis cultures: CP4:pZB5, ZM4:pZB5, 39676:pZB4L, and a hardwood prehydrolysate-adapted variant of 39676:pZB4L (designated asthe “adapted” strain). In pH-stat batch fermentations with unconditioned OHH containing 6% (w/v) glucose, 3% xylose, and 0.75% acetic acid, rec Zm ZM4:pZB5 gave the best performance with a fermentation time of 30h, followed by CP4:pZB5 at 48h, with corresponding volumetric productivities of 1.4 and 0.89 g/(L·h), respectively. Based on the available glucose and xylose, the process ethanol yield for both strains was 0.47 g/g (92% conversion efficiency). At 48 h, the process yield for rec Zm 39676:pZB4L and the adapted strain was 0.32 and 0.34 g/g, respectively. None of the test strains was able to fermentarabinose. Acetic acid tolerance appeared to be a major determining factor in cofermentation performance.  相似文献   
103.
Eugenia patrisii Vahl is a native and non-endemic myrtaceous species of the Brazilian Amazon. Due to few botanical and phytochemical reports of this species, the objective of the present work was to evaluate the seasonal variability of their leaf essential oils, performed by GC and GC-MS and chemometric analysis. The results indicated that the variation in oil yields (0.7 ± 0.1%) could be correlated with climatic conditions and rainy (R) and dry seasons (D). (E)-caryophyllene (R = 17.1% ± 16.0, D = 20.2% ± 17.7) and caryophyllene oxide (R = 30.1% ± 18.4, D = 14.1% ± 19.3) are the major constituents and did not display significant differences between the two seasons. However, statistically, a potential correlation between the main constituents of E. patrisii essential oil and the climatic parameters is possible. It was observed that the higher temperature and insolation rates and the lower humidity rate, which are characteristics of the dry season, lead to an increase in the (E)-caryophyllene contents, while lower temperature and insolation and higher humidity, which occur in the rainy season, lead to an increase in the caryophyllene oxide content. The knowledge of variations in the E. patrisii essential oil composition could help choose the best plant chemical profile for medicinal purposes.  相似文献   
104.
Cancer progression is linked to aberrant protein glycosylation due to the overexpression of several glycosylation enzymes. These enzymes are underexploited as potential anticancer drug targets and the development of rapid-screening methods and identification of glycosylation inhibitors are highly sought. An integrated bioinformatics and mass spectrometry-based glycomics-driven glycoproteomics analysis pipeline was performed to identify an N-glycan inhibitor against lung cancer cells. Combined network pharmacology and in silico screening approaches were used to identify a potential inhibitor, pictilisib, against several glycosylation-related proteins, such as Alpha1-6FucT, GlcNAcT-V, and Alpha2,6-ST-I. A glycomics assay of lung cancer cells treated with pictilisib showed a significant reduction in the fucosylation and sialylation of N-glycans, with an increase in high mannose-type glycans. Proteomics analysis and in vitro assays also showed significant upregulation of the proteins involved in apoptosis and cell adhesion, and the downregulation of proteins involved in cell cycle regulation, mRNA processing, and protein translation. Site-specific glycoproteomics analysis further showed that glycoproteins with reduced fucosylation and sialylation were involved in apoptosis, cell adhesion, DNA damage repair, and chemical response processes. To determine how the alterations in N-glycosylation impact glycoprotein dynamics, modeling of changes in glycan interactions of the ITGA5–ITGB1 (Integrin alpha 5-Integrin beta-1) complex revealed specific glycosites at the interface of these proteins that, when highly fucosylated and sialylated, such as in untreated A549 cells, form greater hydrogen bonding interactions compared to the high mannose-types in pictilisib-treated A549 cells. This study highlights the use of mass spectrometry to identify a potential glycosylation inhibitor and assessment of its impact on cell surface glycoprotein abundance and protein–protein interaction.  相似文献   
105.
Myrcia sylvatica (G. Mey) DC. is known as “insulin plant” because local communities use the infusions of various organs empirically to treat diabetes. The leaves of seven specimens of Myrcia sylvatica (Msy-01 to Msy-07) were collected in the Brazilian Amazon. Furthermore, the essential oils were extracted by hydrodistillation and analyzed by gas chromatography coupled to mass spectrometry, and their chemical compositions were submitted to multivariate analysis (Principal Component Analysis and Hierarchical Cluster Analysis). The multivariate analysis displayed the formation of four chemical profiles (chemotypes), described for the first time as follows: chemotype I (specimen Msy-01) was characterized by germacrene B (24.5%), γ-elemene (12.5%), and β-caryophyllene (10.0%); chemotype II (specimens Msy-03, -06 and -07) by spathulenol (11.1–16.0%), germacrene B (7.8–20.7%), and γ-elemene (2.9–7.6%); chemotype III (Msy-04 and -05) by spathulenol (9.8–10.1%), β-caryophyllene (2.5–10.1%), and δ-cadinene (4.8-5.6%); and chemotype IV, (Msy-02) by spathulenol (13.4%), caryophyllene oxide (15.0%), and α-cadinol (8.9%). There is a chemical variability in the essential oils of Myrcia sylvatica occurring in the Amazon region.  相似文献   
106.
The ability of microscopically organized media, in the form of surfactant micelles and α- and β-cyclodextrins, to enhance the luminescence phenomena of several licit and illicit drugs is discussed. Because physiological samples are not often amenable to direct spectrometric measurements without pretreatment, the applicability of these organized media to liquid chromatography is also considered. Fluorescence enhancements for certain hallucinogenic drugs such as N,N-dimethyltryptamine, mescaline and ibogaine are seen in cyclodextrin media compared to conventional, homogeneous solutions. Heavy-atom substituted sodium dodecyl sulfate micelles induce phosphorescence from cationic and/or hydrophobic drugs at room temperature in fluid solution; drugs such as propranolol, diflunisal, naphalozine, and selected quinoline derivatives can be determined conveniently. Sensitized phosphorescence is observed for several drugs including brethine, cocaine, didrate, estradiol, meprobarbital, methaqualone, phenobarbital, and sulfanilamide; it can be enhanced markedly when micellar solutions are used as the solvent. The energy-transfer step is facilitated by the organizing ability of the micelle; limits of detection can be decreased by over two orders of magnitude compared to homogeneous solvents. Sensitized phosphorescence can also be measured in cyclodextrin solutions, but the detectability is inferior to that in micellar media. Which form of organized medium is superior for determination of drugs is discussed.  相似文献   
107.
The aim of this paper is to provide analytical chemical information on a range of naturally occurring and synthetic coumarins. This analytical chemical information on liquid chromatography-electrospray ionisation-mass spectrometry (HPLC-ESI-MS), ion trap mass spectrometry (ESI-MSn), gas chromatography-flame ionisation detection (GLC-FID) and polarographic behaviour is then incorporated into a database which is of use in identifying unknown coumarins isolated from natural sources. This paper is also concerned with understanding the effect of functional groups in coumarins on their analytical chemical behaviour using the above techniques.  相似文献   
108.
Principal kinetic data are presented for ethylene homopolymerization and ethylene/1‐hexene copolymerization reactions with two types of chromium oxide catalyst. The reaction rate of the homopolymerization reaction is first order with respect to ethylene concentration (both for gas‐phase and slurry reactions); its effective activation energy is 10.2 kcal/mol (42.8 kJ/mol). The r1 value for ethylene/1‐hexene copolymerization reactions with the catalysts is ~30, which places these catalysts in terms of efficiency of α‐olefin copolymerization with ethylene between metallocene catalysts (r1 ~ 20) and Ti‐based Ziegler‐Natta catalysts (r1 in the 80–120 range). GPC, DSC, and Crystaf data for ethylene/1‐hexene copolymers of different compositions produced with the catalysts show that the reaction products have broad molecular weight and compositional distributions. A combination of kinetic data and structural data for the copolymers provided detailed information about the frequency of chain transfer reactions for several types of active centers present in the catalysts, their copolymerization efficiency, and stability. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5315–5329, 2008  相似文献   
109.
This paper describes a method for the numerical solution of a Riabouchinsky cavity flow. Application of a boundary element method leads to a system of non-linear equations. The mild singularity appearing at the separation point is treated with the introduction of a curved boundary element, which satisfies the exact behaviour of the free boundary in that neighbourhood.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号