全文获取类型
收费全文 | 178篇 |
免费 | 1篇 |
国内免费 | 2篇 |
专业分类
化学 | 114篇 |
力学 | 2篇 |
数学 | 19篇 |
物理学 | 46篇 |
出版年
2021年 | 2篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2016年 | 2篇 |
2015年 | 1篇 |
2014年 | 6篇 |
2013年 | 8篇 |
2012年 | 8篇 |
2011年 | 4篇 |
2010年 | 4篇 |
2009年 | 6篇 |
2008年 | 7篇 |
2007年 | 9篇 |
2006年 | 15篇 |
2005年 | 7篇 |
2004年 | 10篇 |
2003年 | 2篇 |
2002年 | 7篇 |
2001年 | 8篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1997年 | 3篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1994年 | 3篇 |
1993年 | 6篇 |
1992年 | 6篇 |
1991年 | 5篇 |
1990年 | 2篇 |
1989年 | 3篇 |
1988年 | 5篇 |
1987年 | 4篇 |
1986年 | 1篇 |
1985年 | 4篇 |
1983年 | 3篇 |
1982年 | 5篇 |
1981年 | 2篇 |
1980年 | 5篇 |
1979年 | 1篇 |
1977年 | 1篇 |
1973年 | 3篇 |
1972年 | 2篇 |
1959年 | 1篇 |
1957年 | 1篇 |
排序方式: 共有181条查询结果,搜索用时 15 毫秒
81.
Viinikanoja A Areva S Kocharova N Aäritalo T Vuorinen M Savunen A Kankare J Lukkari J 《Langmuir : the ACS journal of surfaces and colloids》2006,22(14):6078-6086
We have studied the structure and morphology of self-assembled polyelectrolyte multilayers prepared using poly(styrenesulfonate) (PSS) and four different cationic poly(alkoxythiophene) derivatives bearing methylimidazolium-terminated ionic side chain at the 3-position of the thiophene ring: poly(1-methyl-3-[3-[3-thienyloxy]-propyl]-1H-imidazolium) (P3TOPIM), poly(1-methyl-3-[6-[3-thienyloxy]-hexyl]-1H-imidazolium) (P3TOHIM), poly(1-methyl-3-[2-[(4-methyl-3-thienyl)oxy]-ethyl]-1H-imidazolium ) (P4Me-3TOEIM), and poly(1-methyl-3-[6-[(4-methyl-3-thienyl)oxy]-hexyl]-1H-imidazolium ) (P4Me-3TOHIM). All the multilayers exhibited regular growth. The thickness of the multilayers was measured with ellipsometry, their layer-by-layer growth was followed by polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and ellipsometry, and the morphology of the films was studied by atomic force microscopy (AFM). The length of the methylimidazolium-terminated side chain (C(n), n = 2, 3, 6) and the substituent (H or Me) at the 4-position of the thiophene ring were varied. All multilayers were inhomogeneous in the sub-micrometer scale and contained aggregates of two kinds. The large ones with a low and constant surface number density were attributed to PSS, whereas the small aggregates were polythiophene-based. The surface density of these organic semiconducting nanoparticles greatly depended on the structure of polythiophene, being favored by polymer regioregularity and the length of the side chain. The side chains remained disordered in all the multilayers, but with polythiophenes having hexyl chains both the imidazolium and thiophene rings tended to orient themselves more perpendicular to the surface than in films containing shorter chains (C2 or C3). The relative water content of the multilayers (at 7.1% relative humidity) did not depend on the film thickness and was the lowest for P4Me-3TOHIM. As the number of bilayers increased the methylimidazolium-sulfonate ion pairs gradually weakened and became more individually hydrated. 相似文献
82.
Paajanen M Katainen J Pakarinen OH Foster AS Lahtinen J 《Journal of colloid and interface science》2006,304(2):518-523
The humidity present in ambient atmosphere affects the adhesion of small particles by causing capillary bridge formation between the particle and the surface. Even in moderate relative humidities this, usually attractive, force can have a significant effect on adhesion behaviour of micro and sub-micro particles. We have directly measured the pull-off forces of initially adhered oxide particles on oxide surfaces with atomic force microscope in controlled atmosphere with adjustable humidity. We demonstrate the effect of the surface roughness resulting in two different regions of capillary formation and the particle shape having a strong effect on the humidity dependency of adhesion. The experimental results are explained by theoretical framework. 相似文献
83.
Ari Ämmälä Henrikki Liimatainen Christine Burmeister Jouko Niinimäki 《Cellulose (London, England)》2013,20(5):2451-2460
Nanofibrils (NFC) or microfibrils (MFC) are potential candidates for high filler-loaded papers and board as they are able to compensate for strength loss caused by the filler itself. However, the interaction of nanofibrils and the filler during sheet forming is not yet well understood. The aim here was to examine 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) and periodate-chlorite oxidized (DCC) anionic nanofibrils during sheet forming in order to determine their effects on flocculation, filler retention and the strength and optical properties of the handsheets. The experiments were carried out by manufacturing filler-loaded sheets from refined kraft fibres and ground calcium carbonate (GCC) with various added levels of TEMPO and DCC nanofibrils. The results showed that both types of nanofibril caused pronounced agglomeration of the GCC filler, which increased its retention in the paper web. Given the same filler content, the strength properties were the same or slightly better than in a sheet formed without any chemical agent, while light scattering was slightly inferior. Poorer formation seemed to be the explanation for why the increased bonding induced by NFCs was not reflected in obviously better sheet strengths. The physical properties of sheets containing NFC were superior to those of sheets formed with cationic polyacrylamide as a retention aid with the same filler content and level of formation. Thus NFCs seem to be potential retention aids for use in fine paper production instead of traditional polymers. 相似文献
84.
Jouko Mickelsson 《Letters in Mathematical Physics》2005,71(2):109-121
An invariant for twisted K theory classes on a 3-manifold is introduced. The invariant is then applied to the twisted equivariant classes arising from the supersymmetric Wess–Zumino–Witten model based on the group SU(2). It is shown that the classes defined by different highest weight representations of the loop group LSU(2) are inequivalent. The results are compatible with Freed–Hopkins–Teleman identification of twisted equivariant K theory as the Verlinde algebra. 相似文献
85.
Kaj Backfolk Rob Holmes Petri Ihalainen Petri Sirvi Nick Triantafillopoulos Jouko Peltonen 《Polymer Testing》2007,26(8):1031-1040
The glass transition temperature (Tg) for two latices with different styrene/butadiene compositions was determined by the thermal SPM probe resonance frequency method. The results were compared with the Tg values obtained by differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), process rheometer (PR) and thermo-mechanical analyzer (TMA) measurements. The Tg values detected by the thermal SPM method agreed well with the Tg values obtained by DSC and calculated by the Fox–Flory equation. DMA, on the other hand, showed a significantly higher Tg value for both latices than those obtained from theoretical calculations, the thermal SPM method and DSC. The Tg obtained from the PR curve was slightly higher for the latex with a low styrene content, whereas good agreement was obtained with the thermal SPM data for the latex with a high styrene content. The glass transition temperature determined by TMA agreed fairly well with the thermal SPM data for the latex with the low styrene content, whilst the value of Tg for the second latex was much less than those obtained by the other methods. The thermal SPM method detects changes in thermal behavior (thermal diffusivity, heat capacity) during heating of the latex films rather than changes in the mechanical properties. Information about the sample history could be seen in the thermal SPM curves, which was further associated with the degree of latex film formation, especially when the roughness of the films was taken into consideration. 相似文献
86.
Kocharova N Aäritalo T Leiro J Kankare J Lukkari J 《Langmuir : the ACS journal of surfaces and colloids》2007,23(6):3363-3371
We report the efficient aqueous dispersion of pristine HiPco single-walled carbon nanotubes (SWNTs) with ionic liquid (IL)-based surfactants 1-dodecyl-3-methylimidazolium bromide (1) and 1-(12-mercaptododecyl)-3-methylimidazolium bromide (2), the thiolation of nanotube sidewalls with 2, and the controlled self-assembly of positively charged SWNT-1,2 composites on gold. Optical absorption spectra and resonance Raman (RR) data of obtained aqueous SWNT-1,2 dispersions are consistent with debundled and noncovalently functionalized nanotubes whose electronic properties have not been disturbed. Additionally, the dispersion of pristine nanotube material with surfactants 1 and 2 leads to a high degree of purification from carbonaceous particles. The chiralities of the 14 smallest semiconducting HiPco SWNTs in resonance with Raman excitation at 1064 nm (1.165 eV) were determined in SWNT-2 aqueous dispersion using UV-vis-NIR and RR spectra. X-ray photoelectron spectroscopy (XPS) and surface-enhanced resonance Raman scattering (SERRS) spectroscopy of SWNT-2 submonolayers on gold verified the encapsulation of individualized SWNTs with IL surfactants, the cleavage of S-S disulfide bonds formed in aqueous SWNT-2 suspensions, and the direct chemisorption of the SWNT-2 composite on bare gold via the Au-S bond. Aqueous dispersions of SWNTs with IL-based surfactants add biofunctionality to carbon nanotubes by imparting the positive surface charge necessary for interactions with cell membranes. Our technique, which purifies pristine nanotube material and produces water-soluble, positively charged nanotubes with pendent surface-active thiol groups, may also be translated to other carbon nanotubes and carbon nanostructures. Self-assembled, positively charged submonolayers of SWNTs can be further used for applications in cell biology and sensor technology. 相似文献
87.
Salomäki M Vinokurov IA Kankare J 《Langmuir : the ACS journal of surfaces and colloids》2005,21(24):11232-11240
The effect of temperature on the buildup of polyelectrolyte multilayers consisting of poly(styrenesulfonate) (PSS), poly(diallyldimethylammonium) (PDADMA), and poly(allylamine) (PAH) was studied by using a quartz crystal microbalance. The increase of temperature in the deposition process was shown to have a considerable effect on the rate of the layer-by-layer buildup. The effect of temperature on the PDADMA/PSS deposition was found to be stronger than on the PAH/PSS deposition. The increasing temperature was found to extend the exponential buildup regime in all of the studied systems. A buildup model was created to simulate the buildup and to explain the effect of temperature. The model is based on the assumption that each deposition step leads to a quasi-equilibrium between the concentration of the polymer repeating unit in solution and the composition of the layer. According to the model, the layer-by-layer buildup is inherently exponential, becoming linear whenever diffusion is not fast enough to carry the polymer within the entire thickness of the film. This buildup model is discussed jointly with the earlier published three-zone model of the polyelectrolyte multilayers. The rate of the buildup is characterized by growth exponent beta. The temperature dependence of the growth exponent is discussed in connection with the thermodynamic parameters of the deposition. 相似文献
88.
We define the concept of a logic frame , which extends the concept of an abstract logic by adding the concept of a syntax and an axiom system. In a recursive logic frame the syntax and the set of axioms are recursively coded. A recursive logic frame is called complete (recursively compact , ?0‐compact ), if every finite (respectively: recursive, countable) consistent theory has a model. We show that for logic frames built from the cardinality quantifiers “there exists at least λ ” completeness always implies .0‐compactness. On the other hand we show that a recursively compact logic frame need not be ?0‐compact. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
89.
90.
The aim of the study was to prepare indomethacin nanocrystal-loaded, 3D-printed, fast-dissolving oral polymeric film formulations. Nanocrystals were produced by the wet pearl milling technique, and 3D printing was performed by the semi-solid extrusion method. Hydroxypropyl methyl cellulose (HPMC) was the film-forming polymer, and glycerol the plasticizer. In-depth physicochemical characterization was made, including solid-state determination, particle size and size deviation analysis, film appearance evaluation, determination of weight variation, thickness, folding endurance, drug content uniformity, and disintegration time, and drug release testing. In drug nanocrystal studies, three different stabilizers were tested. Poloxamer F68 produced the smallest and most homogeneous particles, with particle size values of 230 nm and PI values below 0.20, and was selected as a stabilizer for the drug-loaded film studies. In printing studies, the polymer concentration was first optimized with drug-free formulations. The best mechanical film properties were achieved for the films with HPMC concentrations of 2.85% (w/w) and 3.5% (w/w), and these two HPMC levels were selected for further drug-loaded film studies. Besides, in the drug-loaded film printing studies, three different drug levels were tested. With the optimum concentration, films were flexible and homogeneous, disintegrated in 1 to 2.5 min, and released the drug in 2–3 min. Drug nanocrystals remained in the nano size range in the polymer films, particle sizes being in all film formulations from 300 to 500 nm. When the 3D-printed polymer films were compared to traditional film-casted polymer films, the physicochemical behavior and pharmaceutical performance of the films were very similar. As a conclusion, 3D printing of drug nanocrystals in oral polymeric film formulations is a very promising option for the production of immediate-release improved- solubility formulations. 相似文献