首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1945篇
  免费   80篇
  国内免费   9篇
化学   1430篇
晶体学   6篇
力学   14篇
数学   227篇
物理学   357篇
  2023年   29篇
  2022年   23篇
  2021年   50篇
  2020年   63篇
  2019年   59篇
  2018年   47篇
  2017年   26篇
  2016年   58篇
  2015年   35篇
  2014年   55篇
  2013年   81篇
  2012年   152篇
  2011年   177篇
  2010年   66篇
  2009年   48篇
  2008年   113篇
  2007年   123篇
  2006年   100篇
  2005年   106篇
  2004年   77篇
  2003年   59篇
  2002年   49篇
  2001年   18篇
  2000年   13篇
  1998年   10篇
  1997年   11篇
  1996年   11篇
  1995年   15篇
  1994年   16篇
  1993年   17篇
  1992年   9篇
  1991年   12篇
  1990年   10篇
  1989年   7篇
  1988年   9篇
  1987年   9篇
  1986年   11篇
  1985年   17篇
  1984年   20篇
  1983年   11篇
  1982年   21篇
  1981年   22篇
  1980年   24篇
  1979年   12篇
  1978年   19篇
  1977年   24篇
  1976年   18篇
  1975年   7篇
  1974年   10篇
  1973年   14篇
排序方式: 共有2034条查询结果,搜索用时 312 毫秒
101.
The compatibility of multiple functions at a single interface is difficult to achieve, but is even more challenging when the functions directly counteract one another. This study provides insight into the creation of a simultaneously multifunctional surface formed by balancing two orthogonal functions; water repellency and enzyme catalysis. A partially fluorinated thiol is used to impart bulk hydrophobicity on the surface, and an N‐hydroxysuccinimide ester‐terminated thiol provides a specific anchoring sites for the covalent enzyme attachment. Different ratios of the two thiols are mixed together to form amphiphilic self‐assembled monolayers, which are characterized with polarization‐modulation infrared reflection–absorption spectroscopy and contact angle goniometry. The enzyme activity is measured by a fluorescence assay. With the results collected here, specific surface compositions are identified at which the orthogonal functions of water repellency and enzyme catalysis are balanced and exist simultaneously. An understanding of how to effectively balance orthogonal functions at surfaces can be extended to a number of higher‐scale applications.  相似文献   
102.
103.
104.
The carboxyl groups of tryptic peptides were derivatized with a tertiary or quaternary amine labeling reagent to generate more highly charged peptide ions that fragment efficiently by electron transfer dissociation (ETD). All peptide carboxyl groups—aspartic and glutamic acid side-chains as well as C-termini—were derivatized with an average reaction efficiency of 99 %. This nearly complete labeling avoids making complex peptide mixtures even more complex because of partially-labeled products, and it allows the use of static modifications during database searching. Alkyl tertiary amines were found to be the optimal labeling reagent among the four types tested. Charge states are substantially higher for derivatized peptides: a modified tryptic digest of bovine serum albumin (BSA) generates ~90% of its precursor ions with z? > ?2, compared with less than 40 % for the unmodified sample. The increased charge density of modified peptide ions yields highly efficient ETD fragmentation, leading to many additional peptide identifications and higher sequence coverage (e.g., 70 % for modified versus only 43 % for unmodified BSA). The utility of this labeling strategy was demonstrated on a tryptic digest of ribosomal proteins isolated from yeast cells. Peptide derivatization of this sample produced an increase in the number of identified proteins, a >50 % increase in the sequence coverage of these proteins, and a doubling of the number of peptide spectral matches. This carboxyl derivatization strategy greatly improves proteome coverage obtained from ETD-MS/MS of tryptic digests, and we anticipate that it will also enhance identification and localization of post-translational modifications.
Figure
?  相似文献   
105.
Protein oxidation is typically associated with oxidative stress and aging and affects protein function in normal and pathological processes. Additionally, deliberate oxidative labeling is used to probe protein structure and protein–ligand interactions in hydroxyl radical protein footprinting (HRPF). Oxidation often occurs at multiple sites, leading to mixtures of oxidation isomers that differ only by the site of modification. We utilized sets of synthetic, isomeric “oxidized” peptides to test and compare the ability of electron-transfer dissociation (ETD) and collision-induced dissociation (CID), as well as nano-ultra high performance liquid chromatography (nanoUPLC) separation, to quantitate oxidation isomers with one oxidation at multiple adjacent sites in mixtures of peptides. Tandem mass spectrometry by ETD generates fragment ion ratios that accurately report on relative oxidative modification extent on specific sites, regardless of the charge state of the precursor ion. Conversely, CID was found to generate quantitative MS/MS product ions only at the higher precursor charge state. Oxidized isomers having multiple sites of oxidation in each of two peptide sequences in HRPF product of protein Robo-1 Ig1-2, a protein involved in nervous system axon guidance, were also identified and the oxidation extent at each residue was quantified by ETD without prior liquid chromatography (LC) separation. ETD has proven to be a reliable technique for simultaneous identification and relative quantification of a variety of functionally different oxidation isomers, and is a valuable tool for the study of oxidative stress, as well as for improving spatial resolution for HRPF studies.
Figure
?  相似文献   
106.
A modified glassy carbon (GC) electrode was developed for the amperometric detection of biogenic amines, particularly histamine. The electrode was modified with the co‐enzyme pyrroloquinoline quinone (PQQ) by entrapment during electropolymerziation of pyrrole to form polypyrrole (PPy). This method formed a thin film on the electrode surface possessing very good stability with a shelf‐life exceeding one month without loss of signal. Optimal conditions for the PQQ/PPy electrode were determined and a linear response was found for histamine in phosphate buffer (pH 6) at +550 mV from 40 to 170 mg L?1 with a limit of detection (S/N≥3) of 38 mg L?1. The practical linear range offered by this method suggests ideal use for spoilage detection in fermented foods.  相似文献   
107.
Chemical cross-linking of proteins followed by proteolysis and mass spectrometric analysis of the resulting cross-linked peptides provides powerful insight into the quaternary structure of protein complexes. Mixed-isotope cross-linking (a method for distinguishing intermolecular cross-links) was coupled with liquid chromatography, ion mobility spectrometry and mass spectrometry (LC-IMS-MS) to provide an additional separation dimension to the traditional cross-linking approach. This method produced multiplet m/z peaks that are aligned in the IMS drift time dimension and serve as signatures of intermolecular cross-linked peptides. We developed an informatics tool to use the amino acid sequence information inherent in the multiplet spacing for accurate identification of the cross-linked peptides. Because of the separation of cross-linked and non-cross-linked peptides in drift time, our LC-IMS-MS approach was able to confidently detect more intermolecular cross-linked peptides than LC-MS alone.   相似文献   
108.
Abstract

This review discusses the principles of immobilized metal ion affinity chromatography (IMAC) and its applications to protein separations. IMAC functions by binding the accessible electron-donating pendant groups of a protein - such as histidine, cysteine, and tryptophan - to a metal ion which is held by a chelating group covalently attached on a stationary support. A common chelating group is iminodiacetate. The ions commonly used are of borderline or soft metals, such as Cu2+, Ni2+, Co2+, and Zn2+. Protein retention in IMAC depends on the number and type of pendant groups which can interact with the metal. The interaction is affected by a variety of independent variables such as pH, temperature, solvent type, salt type, salt concentration, nature of immobilized metal and chelate, ligand density, and protein size. Proteins are usually eluted by a decreasing pH gradient or by an increasing gradient of a competitive agent, such as imidazole, in a buffer. There are still several unresolved issues in IMAC. The exact structures of protein-immobilized metal complexes need to be known so that retention behavior of proteins can be fully understood and sorbent structures can be optimized. Engineering parameters, such as adsorption/desorption rate constants, sorbent capacities, and intraparticle diffusivities, need to be developed for most protein systems. Engineering analysis and quantitative understanding are also needed so that IMAC can be used efficiently for large scale protein separations.  相似文献   
109.
Five ingredients (caffeine, l ‐arginine, creatine, β‐alanine, and 1,3‐dimethylamylamine) from a workout supplement were separated by HPLC with UV detection and LC–MS using an analytical column based on silica hydride operating in aqueous normal phase mode. While RP methods were observed to be inadequate for the analysis due to low retention, aqueous normal phase chromatography was able to readily retain and resolve the analytes. After method development on the HPLC–UV system, the conditions were successfully transferred to an LC–MS system for analysis. Based on calibration curve data, estimates of 63.5, 380.3, and 13.1 mg/serving (5.50 g) were obtained for creatine, l ‐arginine, and 1,3‐dimethylamylamine, respectively. Standard addition data results were compared to those of the calibration curve study, and the two values differed by less than 1% in the case of creatine. The conditions are suitable for further development as a reliable means of quantitating the analytes in workout supplement formulations.  相似文献   
110.
The use of 1H-NMR-based metabolomics to distinguish and identify unique markers of five Ontario ginseng (Panax quinquefolius L.) landraces and two ginseng species (P. quinquefolius and P. ginseng) was evaluated. Three landraces (2, 3, and 5) were distinguished from one another in the principal component analysis (PCA) scores plot. Further analysis was conducted and specific discriminating metabolites from the PCA loadings were determined. Landraces 3 and 5 were distinguishable on the basis of a decreased NMR intensity in the methyl ginsenoside region, indicating decreased overall ginsenoside levels. In addition, landrace 5 was separated by an increased amount of sucrose relative to the rest of the landraces. Landrace 2 was separated from the rest of the landraces by the increased level of ginsenoside Rb1. The Ontario P. quinquefolius was also compared with Asian P. ginseng by PCA, and clear separation between the two groups was detected in the PCA scores plot. The PCA loadings plot and a t-test NMR difference plot were able to identify an increased level of maltose and a decreased level of sucrose in the Asian ginseng compared with the Ontario ginseng. An overall decrease of ginsenoside content, especially ginsenoside Rb1, was also detected in the Asian ginseng’s metabolic profile. This study demonstrates the potential of NMR-based metabolomics as a powerful high-throughput technique in distinguishing various closely related ginseng landraces and its ability to identify metabolic differences from Ontario and Asian ginseng. The results from this study will allow better understanding for quality assessment, species authentication, and the potential for developing a fully automated method for quality control.
Figure
Principal component analysis scores and loadings plot for differentiating between closely-related ginseng landraces in Ontario, Canada  相似文献   
[首页] « 上一页 [6] [7] [8] [9] [10] 11 [12] [13] [14] [15] [16] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号