首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   5篇
  国内免费   1篇
化学   118篇
力学   1篇
数学   18篇
物理学   23篇
  2023年   3篇
  2021年   1篇
  2020年   5篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   5篇
  2014年   2篇
  2013年   8篇
  2012年   14篇
  2011年   8篇
  2010年   6篇
  2009年   3篇
  2008年   8篇
  2007年   10篇
  2006年   10篇
  2005年   10篇
  2004年   15篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1990年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1980年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1968年   3篇
  1963年   1篇
  1959年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
11.
A high performance liquid chromatographic method with evaporative light scattering detection (HPLC-ELSD) has been developed for the simultaneous determination of multiple sweeteners, i.e., acesulfame-K, alitame, aspartame, cyclamic acid, dulcin, neotame, neohesperidine dihydrochalcone, saccharin and sucralose in carbonated and non-carbonated soft drinks, canned or bottled fruits and yoghurt. The procedure involves an extraction of the nine sweeteners with a buffer solution, sample clean-up using solid-phase extraction cartridges followed by an HPLC-ELSD analysis. The trueness of the method was satisfactory with recoveries ranging from 93 to 109% for concentration levels around the maximum usable dosages for authorised sweeteners and from 100 to 112% for unauthorised compounds at concentration levels close to the limit of quantification (LOQs). Precision measures showed mean repeatability values of <4% (expressed as relative standard deviation) for highly concentrated samples and <5% at concentration levels close to the LOQs. Intermediate precision was in most cases <8%. The limits of detection (LODs) were below 15 microg g(-1) and the LOQs below 30 microg g(-1) in all three matrices. Only dulcin showed slightly higher values, i.e., LODs around 30 microg g(-1) and LOQs around 50 microg g(-1)  相似文献   
12.
The bis(pentadentate) ligand tmpdtne binds two Co(II) centers, and the entity is readily oxidized to the dicobalt(III) derivative [Co(2)(tmpdtne)Cl(2)](4+) which has been separated into two isomeric forms. NMR studies establish these as meso and rac isomers arising from the different or same absolute configurations for the asym configuration about each Co(III) center. Each dinuclear ion base hydrolyses to the dihydroxo derivative [Co(2)(tmpdtne)(OH)(2)](4+) with retained asym configurations about each metal ion and also retained rac or meso configurations. The kinetics for the stepwise loss of the two Cl(-) ligands is uniphasic, and data are presented to show that the loss of the first chloride is rate determining and is followed by very rapid intramolecular and loss of the second Cl(-) via a hydroxo-bridged species to yield the observed dihydroxo derivative. Meso and rac forms of the latter have been crystallized. The X-ray crystal structure of the rac-dihydroxo complex is reported, and it establishes the configurations of all the complexes reported. The (1)H NMR spectra for the hydroxo ions show very high field Co-OH resonances (ca. delta-0.5 ppm) not observed previously for such ions, and this result is discussed in the context of published (1)H NMR data for bridged Co-OH-Co species. The base hydrolysis kinetics for the dichloro ions are first order in [OH(-)], and deprotonation at an alpha-CH(2) center (alpha to a pyridyl) is identified as the source of the catalysis, since there is no NH center available for deprotonation on the ligand. These data further support the new pseudoaminate base hydrolysis mechanism first reported in 2003. The values of k(OH) for the second-order base-catalyzed reaction are ca. 4.0 M(-1) s(-1) for both the rac and meso isomers, and these results are discussed in terms of the increased acidities of these 4+ cations compared to their 2+ ion counterparts.  相似文献   
13.
14.
Abstract— The fluorescence properties of a covalently-linked porphyrin-quinone complex and its zinc derivative were studied in a variety of organic solvents. The kinetics of fluorescence decay for both the quinone and hydroquinone oxidation states were measured in acetonitrile, dichloromethane, dimethyl-formamide, and pentane. The fluorescence yield and kinetics of decay at room temperature were little affected in the porphyrin or zinc porphyrin complexes when the attached quinone was reduced. However, for these complexes the fluorescence yield and lifetimes were both substantially decreased in acetonitrile and dichloromethane when the quinone was in its oxidized state. These latter decay kinetics were not explainable by a process having a single exponential decay. On the other hand, little fluorescence quenching or lifetime shortening was observed in dimethylformamide or pentane, indicating unique solvent dependencies for the quenching process. Evidence was obtained for photoproduced charge separation from EPR measurements on the covalently-linked zinc porphyrin-quinone complex. The EPR data showed equivalent concentrations of a Zn porphyrin cation radical and a benzoquinone anion radical in acetonitrile or dichloromethane at both room temperature and 77 K. The charge separated state rapidly decayed at room temperature (in sub-millisecond times) but was quite stable at 77 K. It is concluded that light-induced charge separation in acetonitrile and dichloromethane at room temperature may occur from the excited singlet state with a high quantum efficiency. A photoproduced charge separated state also occurred when the covalently-linked complexes were incorporated into egg yolk phosphatidylcholine liposomes. The quantum yield for radical formation in this latter system was 0.1 and the lifetimes of the radical species formed were many minutes.  相似文献   
15.
Matrix-assisted laser desorption/ionisation (MALDI) quadrupole time-of-flight mass spectrometry (Q-TOFMS) has been used to detect and image the distribution of a xenobiotic substance in skin. Porcine epidermal tissue was treated with 'Nizoral', a medicated shampoo containing ketoconazole (+/-)-1-acetyl-4-[p-[[(2R,4S)-2-(2,4-dichlorophenyl)-2-(imidazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazine) as active ingredient. Following incubation for 1 h at 37 degrees C all excess formulation was washed from the surface. A cross-section of the drug-treated tissue was then blotted onto a cellulose membrane, precoated in matrix (alpha-cyano-4-hydroxycinnamic acid (CHCA)), by airspray deposition. In separate experiments the tissue surface was treated with Nizoral within a triangular former, and subsequently blotted onto a matrix-coated membrane. Sample membranes were then mounted into the recess of specialised MALDI targets with adhesive tape. All samples were analysed by MALDI-TOFMS using an Applied Biosystem 'Q-star Pulsar i' hybrid Q-TOF mass spectrometer fitted with an orthagonal MALDI ion source and imaging software. Detection of the protonated molecule was readily achievable by this technique. Treatment of the tissue within a template gave rise to images depicting the expected distribution of the drug, demonstrating that this technique is capable of producing spatially useful data. Ion images demonstrating the permeation of the applied compound into the skin were achieved by imaging a cross-sectional imprint of treated tissue. A calibration graph for the determination of ketoconazole was prepared using the sodium adduct of the matrix ion as an internal standard. This enabled construction of a quantitative profile of drug in skin. Conventional haematoxylin and eosin staining and microscopy methods were employed to obtain a histological image of the porcine epidermal tissue. Superimposing the mass spectrometric and histological images appeared to indicate drug permeation into the dermal tissue layer.  相似文献   
16.
Quantitative characterization of the stability of highly dynamic regions in proteins is a significant goal because it represents a cornerstone to an understanding of the role of dynamics in function. Due to experimental constraints, however, monitoring the local stability of highly dynamic regions using standard hydrogen exchange (HX) methods is not a viable approach. Here, an experimental strategy is outlined that takes advantage of the coupling between stability as monitored by HX and binding affinity as monitored by isothermal titration calorimetry. It is shown that the stability of dynamic regions, which are part of binding sites, can be inferred from the response of the system to Gly mutations at surface-exposed sites. When applied to the analysis of the highly dynamic RT loop of SEM5 C-terminal SH3 domain, this approach reveals that the energetic consequences of the observed conformational heterogeneity are significant.  相似文献   
17.
The methanolysis of the insecticide paraoxon (2) was investigated in methanol solution containing varying [La(OTf)(3)] (OTf = (-)OS(O)(2)CF(3)) as a function of at 25 degrees C. Plots of the pseudo-first-order rate constants (k(obs)) for methanolysis as a function of [La(OTf)(3)](total) were obtained under buffered conditions from 5.15 to 10.97, and the slopes of the linear parts of these were used to determine the second-order rate constants (k(2)(obs)) for the La(3+)-catalyzed methanolysis of 2. Detailed analysis of the potentiometric titration data of La(OTf)(3) in methanol through fits to a multicomponent equilibrium mixture of dimers of general stoichiometry La(3+)(2)((-)OCH3)n, where n assumes values of 1-5, gives the equilibrium distribution of each as a function of. These data, when fit to a second expression describing k(2)(obs) in terms of a linear combination of individual rate constants k(2)(2:1), k(2)(2:2).k(2)(2:)n for the dimers, allow one to describe the overall catalytic profile in terms of the individual contributions. The most catalytically important species are the three dimers La(3+)(2)((-)OCH3)1, La(3+)(2)((-)OCH3)2, and La(3+)(2)((-)OCH3)3. The catalysis of the methanolysis of 2 is spectacular: a 2 x 10(-3) M solution of [La(3+)](total), at neutral, affords a 10(9)-fold acceleration relative to the base reaction (t(1/2) approximately 20 s at 8.2) with excellent turnover. A mechanism of the catalyzed reaction involving the La(3+)(2)((-)OCH3)2 species is proposed.  相似文献   
18.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a valuable tool for the analysis of molecules directly from tissue. Imaging of phospholipids is gaining widespread interest, particularly as these lipids have been implicated in a variety of pathologic processes. Formalin fixation (FF) is the standard protocol used in histology laboratories worldwide to preserve tissue for analysis, in order to aid in the diagnosis and prognosis of diseases. This study assesses MALDI imaging of phospholipids directly in formalin fixed tissue, with a view to future analysis of archival tissue. This investigation proves the viability of MALDI-MSI for studying the distribution of lipids directly in formalin fixed tissue, without any pretreatment protocols. High quality molecular images for several phosphatidylcholine (PC) and sphingomyelin (SM) species are presented. Images correspond well with previously published data for the analysis of lipids directly from freshly prepared tissue. Different ionization pathways are observed when analyzing fixed tissue compared with fresh, and this change was found to be associated with formalin buffers employed in fixation protocols. The ability to analyze lipids directly from formalin fixed tissue opens up new doors in the investigation of disease profiles. Pathologic specimens taken for histologic investigation can be analyzed by MALDI-MS to provide greater information on the involvement of lipids in diseased tissue.  相似文献   
19.
20.
The catalytic ability of a dinuclear Zn2+ complex of 1,3-bis-N1-(1,5,9-triazacyclododecyl)propane (3) in promoting the cleavage of an RNA model, 2-hydroxypropyl-p-nitrophenyl phosphate (HPNPP, 1), and a DNA model, methyl p-nitrophenyl phosphate (MNPP, 4), was studied in methanol solution in the presence of added CH3O- at 25 degrees C. The di-Zn2+ complex (Zn2 :3), in the presence of 1 equiv of added methoxide, exhibits a second-order rate constant of (2.75 +/- 0.10) x 10(5) M(-1) s(-1) for the reaction with 1 at s(s)pH 9.5, this being 10(8)-fold larger than the k2 value for the CH3O- promoted reaction (kOCH3 = (2.56 +/- 0.16) x 10(-3) M(-1) s(-1)). The complex is also active toward the DNA model 4, exhibiting Michaelis-Menten kinetics with a KM and kmax of 0.37 +/- 0.07 mM and (4.1 +/- 0.3) x 10(-2) s(-1), respectively. Relative to the background reactions at s(s)pH 9.5, Zn2 :3 accelerates cleavage of each phosphate diester by a remarkable factor of 1012-fold. A kinetic scheme common to both substrates is discussed. The study shows that a simple model system comprising a dinuclear Zn2+ complex and a medium effect of the alcohol solvent achieves a catalytic reactivity that approaches enzymatic rates and is well beyond anything seen to date in water for the cleavage of these phosphate diesters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号