首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8576篇
  免费   203篇
  国内免费   62篇
化学   5788篇
晶体学   84篇
力学   250篇
综合类   1篇
数学   1313篇
物理学   1405篇
  2022年   82篇
  2021年   83篇
  2020年   155篇
  2019年   112篇
  2018年   84篇
  2017年   94篇
  2016年   186篇
  2015年   151篇
  2014年   194篇
  2013年   395篇
  2012年   456篇
  2011年   556篇
  2010年   281篇
  2009年   223篇
  2008年   493篇
  2007年   456篇
  2006年   443篇
  2005年   447篇
  2004年   428篇
  2003年   285篇
  2002年   308篇
  2001年   89篇
  2000年   84篇
  1999年   64篇
  1998年   79篇
  1997年   99篇
  1996年   139篇
  1995年   85篇
  1994年   69篇
  1993年   96篇
  1992年   68篇
  1991年   81篇
  1990年   77篇
  1989年   58篇
  1988年   71篇
  1987年   61篇
  1986年   54篇
  1985年   113篇
  1984年   131篇
  1983年   91篇
  1982年   113篇
  1981年   108篇
  1980年   92篇
  1979年   82篇
  1978年   108篇
  1977年   93篇
  1976年   80篇
  1975年   67篇
  1974年   67篇
  1973年   58篇
排序方式: 共有8841条查询结果,搜索用时 0 毫秒
991.
Fluorescence methodologies have been utilized to examine micropolarity, intramolecular motion, and singlet quenching in the intraparticle void volume of zeolites X, Y, and ultrastable Y (USY) interfaced with bathing polar solvents. Micropolarity was assessed from the 3-to-1 band ratio (III/I) of the fluorescence spectrum of pyrene (PY) and from lambda(max) of the fluorescence spectrum of 1-pyrenecarboxaldehyde (1-PCA). In zeolites bathed in anhydrous solvents, both PY and 1-PCA reported increased micropolarity according to the trend USY < bulk solvent < NaX approximately NaY. For example, in NaY (USY), III/I ranged from 0.44 (0.98) in acetonitrile to 0.52 (1.34) in n-hexanol, compared to 0.60, 1.06, and 1.62 in bulk acetonitrile (ACN), n-hexanol, and n-hexane, respectively. The polarity studies reveal that the ionic nature of NaX and NaY and the hydrophobic nature of USY strongly influence the microenvironment of the arene despite the presence of desorbing polar solvents. Constraints on intramolecular motion were examined in polar-solvated NaX through measurements of the fluorescence lifetime of trans-stilbene. Lifetimes ranged from 113 ps in NaX-ACN to 671 ps in NaX-tert-butyl alcohol. The latter value is close to that observed in bulk glycerol. Diffusion-controlled quenching of PY fluorescence by O2 and a series of nitrocompounds dissolved in solvents bathing the zeolite was examined by a time-resolved approach. For all of the quenchers and solvents studied, quenching was more efficient in USY compared to NaX and NaY. Interestingly, the rate of O2 quenching in USY-MeOH was only 12 times lower than that in bulk MeOH. In contrast, in NaY-MeOH and NaX-MeOH the rate of O2 quenching was too low to be measured. The rate constants in these systems were therefore taken as the rate constant for diffusion-controlled quenching of trapped electrons measured previously. These values were 600 times and 10(5) times lower than the rate of fluorescence quenching in USY-MeOH, respectively. The O2 quenching studies show that dispersive interactions of polar solvents with the cavity walls dominate in USY because of the hydrophobic nature of the USY surface. In NaX and NaY, stronger ion-dipole and hydrogen bonding interactions dominate and lead to more restricted access and lowered quenching efficiency. Perrin (or static) quenching of pyrene fluorescence was also examined to infer the concentration of nitromethane (NM) in the void volume of NaX and NaY bathed in MeOH, ACN, or H2O. The results indicate that access of NM to the interior of NaY is more inhibited in ACN compared to MeOH, presumably because of the higher dipole moment of ACN and its resulting stronger association with the zeolite surface. At similar levels of static quenching equated to a similar NM concentration in the zeolite, dynamic quenching by NM varied by no more than a factor of 2 in all systems compared. This implies that the rate of NM diffusion in solvated zeolite interiors is similar regardless of zeolite or solvent properties. In contrast to O2 diffusion in zeolites, NM exhibits a high dipole moment and can therefore migrate through polar-solvated zeolite apertures by adsorbing to the zeolite. Overall, the results of this study show a close relationship between the behavior of probes and quenchers in the confines of polar-solvated zeolite interiors and the chemical properties of the zeolite. Differences between weakly and strongly interacting surfaces are revealed clearly in the results.  相似文献   
992.
This letter addresses how iron redox cycling and the hydration properties of the exchangeable cation influence the Br?nsted basicity of adsorbed water in 2:1 phyllosilicates. The probe pentachloroethane undergoes facile dehydrochlorination to tetrachloroethene, attributed to increases in the Br?nsted basicity of near-surface hydrating water molecules following the reduction of structural Fe(III) to Fe(II). This dehydrochlorination process is studied in the presence of Na(+)- or K(+)-saturated Upton montmorillonite [(Na0.82 (Si7.84 Al0.16)(Al3.10 Fe(3+)0.3 Mg0.66) O20 (OH)4] or ferruginous smectite [(Na0.87 Si7.38 Al0.62)(Al1.08) Fe(3+)2.67 Fe(2+)0.01 Mg0.23) O20 (OH)4]. The effect of iron redox cycling on pentachloroethane dehydrochlorination is studied using reduced or reduced and reoxidized smectite samples saturated with Na+ (fully expanded clay) or K+ (fully collapsed clay). Variations in the clay Br?nsted basicity following Na+ -for- K+ exchange are explained by cationic charge compensation or interlayer hydration/expansion imposed by the nature of the exchangeable cation. Inverse relations between K+ fixation and clay water content as well as trends in pentachloroethane transformation indicate that increases in the Br?nsted basicity result from increases in the clay hydrophilicity and shifts in the local activity of distorted clay water. Potassium fixation causes partially collapsed smectites bearing low amounts of structural Fe(II) to have a similar reactivity to that of fully expanded smectites (Na+ form) bearing higher amounts of structural Fe(II). In particular, the conversion of up to 80% of the pentachloroethane to tetrachloroethane by K+ -saturated, reoxidized Upton was explained because the fixation of K+ causes nonreversible expansion and incomplete reoxidation of structural Fe(II), which contributes to the stabilization of charge density near sites bearing Fe(II). Higher pentachloroethane conversions by Upton montmorillonite over ferruginous smectite, however, suggest that charge dispersion rather than site specificity contributes predominantly to clay reactivity. Thus, clay interlayer hydration/expansion imposed by the nature of the exchangeable cation alters water dissociation and proton exchange in Fe(II)-Fe(III) phyllosilicates susceptible to iron redox cycling.  相似文献   
993.
Nanowires have received considerable attention owing to their broad potential applications. We report here on the application of nanowires for magnetic control of the electrochemical reactivity and demonstrate how one can modulate the electrocatalytic activity by orienting catalytic nanowires at different angles. Unlike early "on/off" magnetic switching studies based on functionalized magnetic spheres, the present magnetoswitchable protocol relies on modulating the electrochemical reactivity without removing the magnetic material from the surface. Such behavior is attributed to the reversible blocking of the redox processes and to changes in the tortuosity-dependent flux rate. The nanowire-based magnetoswitchable protocol may be extremely useful for adjusting the electrochemical reactivity, such as for tuning the power output of fuel cells (rather than switching the power on/off).  相似文献   
994.
The synthesis of substituted anthracenes from naphthalene precursors is described. The key step involved heating ortho-allyl substituted naphthalene-2-carbaldehydes and potassium t-butoxide in DMF with concomitant irradiation from a high pressure mercury lamp to afford anthracenes in yields of 76-98%.  相似文献   
995.
Highly diastereoselective (>20:1) bromo-lactonization of N-sulfonyl-2-allyl-2-phenylglycine methyl ester (11) was observed. Successive treatment of the chiral lactone with MeONa gave the desired (2S,4R)-4-hydroxy-2-phenylproline derivative in high yield without erosion of the diastereoselectivity. The starting chiral non-racemic compound (5) was prepared from the racemic 2-phenylglycine using a classical kinetic resolution (crystallization), an asymmetric phase transfer alkylation, and an enzyme-catalyzed kinetic resolution.  相似文献   
996.
997.
Stable radical 2-(6-uradinyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-1-oxyl (1) binds to hydrogen-bonding complement 2,6-di(propylamido)pyridine (DAP) in chloroform with Ka=220 M(-1) at 33 degrees C; ESI-MS shows not only 1:DAP complementary dyad formation, but also 1:(DAP)2 formation at higher concentrations of DAP.  相似文献   
998.
A joint theoretical and experimental investigation is undertaken to study the effects of OH-stretch/HOON torsion coupling and of quantum yield on the previously reported first overtone action spectrum of cis-cis HOONO (peroxynitrous acid). The minimum energy path along the HOON dihedral angle is computed at the coupled cluster singles and doubles with perturbative triples level with correlation consistent polarized quadruple zeta basis set, at the structure optimized using the triple zeta basis set (CCSD(T)/cc-pVQZ//CCSD(T)/cc-pVTZ). The two-dimensional ab initio potential energy and dipole moment surfaces for cis-cis HOONO are calculated as functions of the HOON torsion and OH bond length about the minimum energy path at the CCSD(T)/cc-pVTZ and QCISD/AUG-cc-pVTZ (QCISD-quadratic configuration interaction with single and double excitation and AUG-augmented with diffuse functions) level of theory/basis, respectively. The OH-stretch vibration depends strongly on the torsional angle, and the torsional potential possesses a broad shelf at approximately 90 degrees , the cis-perp conformation. The calculated electronic energies and dipoles are fit to simple functional forms and absorption spectra in the region of the OH fundamental and first overtone are calculated from these surfaces. While the experimental and calculated spectra of the OH fundamental band are in good agreement, significant differences in the intensity patterns are observed between the calculated absorption spectrum and the measured action spectrum in the 2nu(OH) region. These differences are attributed to the fact that several of the experimentally accessible states do not have sufficient energy to dissociate to OH+NO(2) and therefore are not detectable in an action spectrum. Scaling of the intensities of transitions to these states, assuming D(0)=82.0 kJ/mol, is shown to produce a spectrum that is in good agreement with the measured action spectrum. Based on this agreement, we assign two of the features in the spectrum to Deltan=0 transitions (where n is the HOON torsion quantum number) that are blue shifted relative to the origin band, while the large peak near 7000 cm(-1) is assigned to a series of Deltan=+1 transitions, with predominant contributions from torsionally excited states with substantial cis-perp character. The direct absorption spectrum of cis-cis HOONO (6300-6850 cm(-1)) is recorded by cavity ringdown spectroscopy in a discharge flow cell. A single band of HOONO is observed at 6370 cm(-1) and is assigned as the origin of the first OH overtone of cis-cis HOONO. These results imply that the origin band is suppressed by over an order of magnitude in the action spectrum, due to a reduced quantum yield. The striking differences between absorption and action spectra are correctly predicted by the calculations.  相似文献   
999.
We present a method for computing a basis of localized orthonormal orbitals (both occupied and virtual), in whose representation the Fock matrix is extremely diagonal dominant. The existence of these orbitals is shown empirically to be sufficient for achieving highly accurate second-order Moller-Plesset (MP2) energies, calculated according to Kapuy's method. This method (which we abbreviate KMP2) involves a different partitioning of the n-electron Hamiltonian and scales at most quadratically, with potential for linearity, in the number of electrons. As such, we believe the KMP2 algorithm presented here could be the basis of a viable approach to local-correlation calculations.  相似文献   
1000.
We show an experimental approach for directly observing the condensation of polynucleotides and their electrolyte counterions at a liquid/solid interface. X-ray standing waves (XSW) generated by Bragg diffraction from a d = 20 nm Si/Mo multilayer substrate are used to measure the distinct distribution profiles of the polyanions and simple cations along the surface normal direction with subnanometer resolution. The 1D spatial sensitivity of this approach is enhanced by observing the XSW induced fluorescence modulations over multiple orders of Bragg peaks. We study the interesting divalent cation driven adsorption of anionic polynucleotides to anionic surfaces by exposing a hydroxyl-terminated silica surface to an aqueous solution with ZnCl2 and mercurated poly-uridylic acid (a synthetic RNA molecule). The in situ long-period XSW measurements are used to follow the evolution of both the Zn and Hg distribution profiles during the adsorption process. The conditions and physical mechanisms that govern the observed divalent cation adsorption and subsequent polynucleotide adsorption to an anionic surface are explained by a thermodynamic model that incorporates nonlinear electrostatic effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号