首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10348篇
  免费   231篇
  国内免费   66篇
化学   7058篇
晶体学   107篇
力学   283篇
综合类   1篇
数学   1402篇
物理学   1794篇
  2023年   64篇
  2022年   135篇
  2021年   179篇
  2020年   226篇
  2019年   189篇
  2018年   125篇
  2017年   136篇
  2016年   253篇
  2015年   196篇
  2014年   265篇
  2013年   500篇
  2012年   604篇
  2011年   708篇
  2010年   354篇
  2009年   278篇
  2008年   587篇
  2007年   548篇
  2006年   525篇
  2005年   545篇
  2004年   491篇
  2003年   347篇
  2002年   347篇
  2001年   117篇
  2000年   96篇
  1999年   75篇
  1998年   83篇
  1997年   110篇
  1996年   145篇
  1995年   89篇
  1994年   71篇
  1993年   98篇
  1992年   70篇
  1991年   85篇
  1990年   80篇
  1989年   62篇
  1988年   75篇
  1987年   64篇
  1985年   117篇
  1984年   133篇
  1983年   93篇
  1982年   115篇
  1981年   110篇
  1980年   93篇
  1979年   83篇
  1978年   109篇
  1977年   96篇
  1976年   83篇
  1975年   69篇
  1974年   69篇
  1973年   60篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
Construction of receptors with binding sites of specific size, shape, and functional groups is important to both chemistry and biology. Covalent imprinting of a photocleavable template within surface–core doubly cross‐linked micelles yielded carboxylic acid‐containing hydrophobic pockets within the water‐soluble molecularly imprinted nanoparticles. The functionalized binding pockets were characterized by their binding of amine‐ and acid‐functionalized guests under different pH values. The nanoparticles, on average, contained one binding site per particle and displayed highly selective binding among structural analogues. The binding sites could be modified further by covalent chemistry to modulate their binding properties.  相似文献   
2.
The milk fat globule-EGF-factor 8 protein (MFG-E8) has been identified in various tissues, where it has an important role in intercellular interactions, cellular migration, and neovascularization. Previous studies showed that MFG-E8 is expressed in different cell types under normal and pathophysiological conditions, but its expression in hematopoietic stem cells (HSCs) during hematopoiesis has not been reported. In the present study, we investigated MFG-E8 expression in multiple hematopoietic tissues at different stages of mouse embryogenesis. Using immunohistochemistry, we showed that MFG-E8 was specifically expressed in CD34+ HSCs at all hematopoietic sites, including the yolk sac, aorta-gonad-mesonephros region, placenta and fetal liver, during embryogenesis. Fluorescence-activated cell sorting and polymerase chain reaction analyses demonstrated that CD34+ cells, purified from the fetal liver, expressed additional HSC markers, c-Kit and Sca-1, and that these CD34+ cells, but not CD34 cells, highly expressed MFG-E8. We also found that MFG-E8 was not expressed in HSCs in adult mouse bone marrow, and that its expression was confined to F4/80+ macrophages. Together, this study demonstrates, for the first time, that MFG-8 is expressed in fetal HSC populations, and that MFG-E8 may have a role in embryonic hematopoiesis.  相似文献   
3.
A single‐component ambiphilic system capable of the cooperative activation of protic, hydridic and apolar H? X bonds across a Group 13 metal/activated β‐diketiminato (Nacnac) ligand framework is reported. The hydride complex derived from the activation of H2 is shown to be a competent catalyst for the highly selective reduction of CO2 to a methanol derivative. To our knowledge, this process represents the first example of a reduction process of this type catalyzed by a molecular gallium complex.  相似文献   
4.
The aim of this study was to explore the protective effects of Trichosanthes kirilowii ethanol extract (TKE) against cisplatin-induced acute renal failure (ARF). In the in vitro study, TKE-pretreated porcine kidney cells (PK15) exhibited enhanced cell viability after cisplatin (15 μg mL? 1) treatment in both MTT and crystal violet assays. PK15 cells pretreated with TKE (50 μg mL? 1) exhibited increased glutathione content, decreased reactive oxygen species production and ameliorated p53 expression. In vivo study, rats were administered with TKE for 4 weeks before cisplatin (5 mg kg? 1) injection. TKE (100 mg kg? 1) decreased blood urea nitrogen and creatinine levels by 24% and 47%, respectively, in comparison with cisplatin-alone group. In addition, TKE pretreatment ameliorated cisplatin-induced oxidative stress, as evidenced by increased antioxidative enzyme levels and decreased lipid peroxidation levels. Moreover, TKE pretreatment reduced histopathological alterations in the kidney with decreased apoptotic cells. Taken together, TKE might be beneficial in treating cisplatin-induced ARF.  相似文献   
5.
The reaction of N2 with trinuclear niobium and tungsten sulfide clusters Nb3Sn and W3Sn (n=0–3) was systematically studied by density functional theory calculations with TPSS functional and Def2-TZVP basis sets. Dissociations of N−N bonds on these clusters are all thermodynamically allowed but with different reactivity in kinetics. The reactivity of Nb3Sn is generally higher than that of W3Sn. In the favorite reaction pathways, the adsorbed N2 changes the adsorption sites from one metal atom to the bridge site of two metal atoms, then on the hollow site of three metal atoms, and at that place, the N−N bond dissociates. As the number of ligand S atoms increases, the reactivity of Nb3Sn decreases because of the hindering effect of S atoms, while W3S and W3S2 have the highest reactivity among four W3Sn clusters. The Mayer bond order, bond length, vibrational frequency, and electronic charges of the adsorbed N2 are analyzed along the reaction pathways to show the activation process of the N−N bond in reactions. The charge transfer from the clusters to the N2 antibonding orbitals plays an essential role in N−N bond activation, which is more significant in Nb3Sn than in W3Sn, leading to the higher reactivity of Nb3Sn. The reaction mechanisms found in this work may provide important theoretical guidance for the further rational design of related catalytic systems for nitrogen reduction reactions (NRR).  相似文献   
6.
Journal of Thermal Analysis and Calorimetry - Crystal-to-crystal transitions of a high-temperature nylon, poly(2-methtyl pentamethylene terephthalamide, nylon M5T), were studied by conventional and...  相似文献   
7.
8.
Polycaprolactone (PCL) is widely used in biomedical applications as electrospun fibers or porous foams. As PCL is synthetic polymer, many researchers have explored blends of PCL–gelatin to combine mechanical and bioactive properties of individual components. High pressure carbon dioxide (CO2) has been studied to foam and impregnate many biocompatible polymers. In case of PCL–gelatin blends, certain compositions can be swelled reversibly under high pressure CO2 without permanent deformation. This allows successful impregnation of PCL–gelatin blends under CO2. This study summarizes effect of different treatments adopted during impregnation process including high pressure CO2 on several blend compositions of PCL–gelatin blends. Stress relaxation, polymer melting and dissolution were observed during several treatments which affects porosity and scaffold structure significantly. Results summarized in this study will aid in optimum selection of PCL–gelatin blend composition for biomedical applications. Furthermore, CO2 solubility in polymers is restricted due to thermodynamic limitations but can be altered in the presence of a co-solvent to produce better foams. PCL can be foamed using supercritical CO2. However, CO2 foaming of PCL–gelatin blend becomes challenging to simultaneous swelling of PCL and compression of gelatin providing blend structural stability. This study has demonstrated ability of supercritical CO2 to foam PCL–gelatin blends in presence of water to create porous structure. These foams were subjected post-fabrication crosslinking and supercritical CO2 without losing porosity of foams. Thus, creating a strategy to use environmentally benign processes to fabricate, crosslink and impregnate porous scaffolds for biomedical applications.  相似文献   
9.
One step synthesis of the natural product indirubin by reductive coupling of isatin with KBH4 is described and a possible mechanism for the reaction is proposed. Eleven indirubin derivatives were obtained easily from the corresponding substituted isatin.  相似文献   
10.

Although cellulose nanomaterials have promising properties and performance in a wide application space, one hinderance to their wide scale industrial application has been associated with their economics of dewatering and drying and the ability to redisperse them back into suspension without introducing agglomerates or lose of yield. The present work investigates the dewatering of aqueous suspensions of cellulose nanofibrils (CNFs) using ultrasound as a potentially low-cost, non-thermal, and scalable alternative to traditional heat-based drying methods such as spray drying. Specifically, we use vibrating mesh transducers to develop a direct-contact mode ultrasonic dewatering platform to remove water from CNF suspensions in a continuous manner. We demonstrate that the degree of dewatering is modulated by the number of transducers, their spatial configuration, and the flow rate of the CNF suspension. Water removal of up to 72 wt.% is achieved, corresponding to a final CNF concentration of 11 wt.% in 30 min using a two-transducer configuration. To evaluate the redispersibility of the dewatered CNF material, we use a microscopic analysis to quantify the morphology of the redispersed CNF suspension. By developing a custom software pipeline to automate image analysis, we compare the histograms of the dimensions of the redispersed dewatered fibrils with the original CNF samples and observe no significant difference, suggesting that no agglomeration is induced due to ultrasonic dewatering. We also perform SEM analysis to evaluate the nanoscale morphology of these fibrils showing a width range of 20 nm–4 um. We estimate that this ultrasound dewatering technique is also energy-efficient, consuming up to 36% less energy than the enthalpy of evaporation per kilogram of water. Together with the inexpensive cost of transducers (<?$1), the potential for scaling up in parallel flow configurations, and excellent redispersion of the dewatered CNFs, our work offers a proof-of-concept of a sustainable CNF dewatering system, that addresses the shortcomings of existing techniques.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号