首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1479篇
  免费   86篇
  国内免费   8篇
化学   1178篇
晶体学   10篇
力学   27篇
数学   151篇
物理学   207篇
  2023年   12篇
  2022年   19篇
  2021年   31篇
  2020年   34篇
  2019年   26篇
  2018年   29篇
  2017年   21篇
  2016年   70篇
  2015年   53篇
  2014年   61篇
  2013年   65篇
  2012年   112篇
  2011年   133篇
  2010年   61篇
  2009年   67篇
  2008年   109篇
  2007年   96篇
  2006年   117篇
  2005年   98篇
  2004年   71篇
  2003年   49篇
  2002年   41篇
  2001年   30篇
  2000年   19篇
  1999年   7篇
  1998年   15篇
  1997年   16篇
  1996年   10篇
  1995年   12篇
  1994年   11篇
  1993年   5篇
  1992年   6篇
  1991年   6篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1979年   2篇
  1978年   6篇
  1977年   5篇
  1975年   2篇
  1973年   2篇
  1957年   2篇
  1954年   1篇
  1941年   2篇
排序方式: 共有1573条查询结果,搜索用时 15 毫秒
81.
82.
Non-biological catalysts following the governing principles of enzymes are attractive systems to disclose unprecedented reactivities. Most of those existing catalysts feature an adaptable molecular recognition site for substrate binding that are prone to undergo conformational selection pathways. Herein, we present a non-biological catalyst that is able to bind substrates via the induced fit model according to in-depth computational calculations. The system, which is constituted by an inflexible substrate-recognition site derived from a zinc-porphyrin in the second coordination sphere, features destabilization of ground states as well as stabilization of transition states for the relevant iridium-catalyzed C−H bond borylation of pyridine. In addition, this catalyst appears to be most suited to tightly bind the transition state rather than the substrate. Besides these features, which are reminiscent of the action modes of enzymes, new elementary catalytic steps (i. e. C−B bond formation and catalyst regeneration) have been disclosed owing to the unique distortions encountered in the different intermediates and transition states.  相似文献   
83.
We study experimentally the collective dynamics of two delay-coupled semiconductor lasers. The lasers are coupled by mutual injection of their emitted light beams, at a distance for which coupling delay times are non-negligible. This system is known to exhibit lag synchronization, with one laser leading and the other one lagging the dynamics. Our setup is designed such that light travels along different paths in the two coupling directions, which allows independent control of the two coupling strengths. A comparison of unidirectional and bidirectional coupling reveals that the leader-laggard roles can be switched by acting upon the coupling architecture of the system. Additionally, numerical simulations show that a more extensive control of the network architecture can also lead to changes in the dynamics of the system. Finally, we discuss the relevance of these results for bidirectional chaotic communications.  相似文献   
84.

Background  

NMDA (N-methyl-D-aspartic acid) is a widely known agonist for a class of glutamate receptors, the NMDA type. Synthetic NMDA elicits very strong activity for the induction of hypothalamic factors and hypophyseal hormones in mammals. Moreover, endogenous NMDA has been found in rat, where it has a role in the induction of GnRH (Gonadotropin Releasing Hormone) in the hypothalamus, and of LH (Luteinizing Hormone) and PRL (Prolactin) in the pituitary gland.  相似文献   
85.
We have quantum chemically analyzed element−element bonds of archetypal HnX−YHn molecules (X, Y=C, N, O, F, Si, P, S, Cl, Br, I), using density functional theory. One purpose is to obtain a set of consistent homolytic bond dissociation energies (BDE) for establishing accurate trends across the periodic table. The main objective is to elucidate the underlying physical factors behind these chemical bonding trends. On one hand, we confirm that, along a period (e. g., from C−C to C−F), bonds strengthen because the electronegativity difference across the bond increases. But, down a period, our findings constitute a paradigm shift. From C−F to C−I, for example, bonds do become weaker, however, not because of the decreasing electronegativity difference. Instead, we show that the effective atom size (via steric Pauli repulsion) is the causal factor behind bond weakening in this series, and behind the weakening in orbital interactions at the equilibrium distance. We discuss the actual bonding mechanism and the importance of analyzing this mechanism as a function of the bond distance.  相似文献   
86.
Extremely slow and extremely fast new water oxidation catalysts based on the Ru–bda (bda=2,2′‐bipyridine‐6,6′‐dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycles s?1, respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system π‐stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts.  相似文献   
87.
A chiral selection process in a self‐assembled soft monolayer of an achiral amphiphile as a consequence of its interaction with chiral species dissolved in the aqueous subphase, is reported. The extent of the chiral selection is statistically measured in terms of the enantiomorphic excess of self‐assembled submillimeter domains endowed with well‐defined orientational chirality that is unambiguously resolved using optical microscopy. Our results show that the emergence of chirality is mediated by electrostatic interactions and significantly enhanced by hydrophobic effects. This chiral chemical effect can be suppressed and even reversed by opposing a macroscopic physical influence, such as vortical stirring. This result gives evidence for the crucial role of hydrodynamic effects in supramolecular aggregation.  相似文献   
88.
The synthesis, crystal structure, and magnetic properties (from a combined experimental and First‐Principles Bottom‐Up theoretical study) of the new compound catena‐dichloro(2‐Cl‐3Mpy)copper(II), 1 , [2‐Cl‐3Mpy=2‐chloro‐3‐methylpyridine] are described and rationalized. Crystals of 1 present well isolated magnetic 1D chains (no 3D order was experimentally observed down to 1.8 K) and magnetic frustration stemming from competing ferromagnetic nearest‐neighbor (JNN) interactions and antiferromagnetic next‐nearest neighbor (JNNN) interactions, in which α=JNNN/JNN <?0.25. These magnetic interactions give rise to a unique magnetic topology: a two‐leg zigzag ladder composed of edge‐sharing up‐down triangles with antiferromagnetic interactions along the rails and ferromagnetic interactions along the zigzag chain that connects the rails. Crystals of 1 also present a random distribution of the 2‐Cl‐3Mpy groups, which are arranged in two different orientations, each with a 50 % occupancy. This translates into a random static structural disorder within each chain by virtue of which the value of the JNN magnetic interactions can randomly take one of the following three values: 53, 36, and 16 cm?1. The structural disorder does not affect the JNNN value, which in all cases is approximately ?9 cm?1. A proper statistical treatment of this disorder provides a computed magnetic susceptibility curve that reproduces the main features of the experimental data.  相似文献   
89.
A bridge between classical organic polycyclic aromatic hydrocarbons (PAH) and closo borohydride clusters is established by showing that they share a common origin regulated by the number of valence electrons in an electronic confined space. Application of the proposed electronic confined space analogy (ECSA) method to archetypal PAHs leads to the conclusion that the 4n+2 Wade–Mingos rule for three‐dimensional closo boranes is equivalent to the (4n+2)π Hückel rule for two‐dimensional PAHs. More importantly, use of ECSA allows design of new interesting fused closo boranes which can be a source of inspiration for synthetic chemists.  相似文献   
90.
A novel strategy for fabrication of ordered ceramic–metal nanocomposites was demonstrated by multifunctional block copolymer/metal nanoparticle self-assembly. Hybrid organic–inorganic block copolymer poly(3-methacryloxypropyl-T8-heptaisobutyl-polyhedral oligomeric silsesquioxane-block-N,N-dimethylaminoethyl methacrylate) was synthesized and used as a bi-functional structure directing agent for ligand-stabilized platinum nanoparticles to form ordered organic–inorganic nanocomposites with dense loading of inorganic species in both microphase separated domains. Subsequently, thin films of the hybrid material were converted to ordered silica (ceramic)–platinum (metal) nanocomposites via UV-assisted ozonolysis. This is the first time ordered ceramic–metal nanocomposites were achieved through a bottom-up approach, opening up opportunities for the design and synthesis of a broad range of ordered inorganic–inorganic nanocomposites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号