首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4011篇
  免费   179篇
  国内免费   24篇
化学   3118篇
晶体学   46篇
力学   82篇
综合类   1篇
数学   263篇
物理学   704篇
  2023年   20篇
  2022年   56篇
  2021年   64篇
  2020年   71篇
  2019年   98篇
  2018年   36篇
  2017年   55篇
  2016年   114篇
  2015年   112篇
  2014年   135篇
  2013年   225篇
  2012年   296篇
  2011年   361篇
  2010年   224篇
  2009年   156篇
  2008年   298篇
  2007年   228篇
  2006年   242篇
  2005年   242篇
  2004年   178篇
  2003年   157篇
  2002年   155篇
  2001年   86篇
  2000年   78篇
  1999年   41篇
  1998年   39篇
  1997年   17篇
  1996年   39篇
  1995年   22篇
  1994年   26篇
  1993年   25篇
  1992年   18篇
  1991年   24篇
  1990年   24篇
  1989年   15篇
  1988年   17篇
  1987年   16篇
  1986年   16篇
  1985年   21篇
  1984年   11篇
  1983年   11篇
  1982年   11篇
  1981年   16篇
  1980年   9篇
  1979年   12篇
  1978年   9篇
  1977年   14篇
  1976年   11篇
  1974年   12篇
  1973年   6篇
排序方式: 共有4214条查询结果,搜索用时 0 毫秒
51.
52.
Park JH  Chung DS  Park JW  Ahn T  Kong H  Jung YK  Lee J  Yi MH  Park CE  Kwon SK  Shim HK 《Organic letters》2007,9(13):2573-2576
New soluble anthracene derivatives containing thiophene and phenylenevinylene derivatives were synthesized via well-known synthetic routes. TIPS derivatives were added at the 9,10-positions of anthracene for the solubility and crystallinity. Both of the molecules were found to be promising for high charge mobility and stable organic semiconductors. The soluble anthracene core (TIPSAnt) is a potential precursor for the synthesis of novel semiconducting materials.  相似文献   
53.
54.
55.
We demonstrated previously that Coptidis rhizoma extract (CRE) prevented S-nitroso-N-acetylpenicillamine-induced apoptotic cell death via the inhibition of mitochondrial membrane potential disruption and cytochrome c release in RINm5F (RIN) rat insulinoma cells. In this study, the preventive effects of CRE against cytokine-induced beta-cell death was assessed. Cytokines generated by immune cells infiltrating pancreatic islets are crucial mediators of beta-cell destruction in insulin-dependent diabetes mellitus. The treatment of RIN cells with IL-1beta and IFN-gamma resulted in a reduction of cell viability. CRE completely protected IL-1beta and IFN-gamma-mediated cell death in a concentration-dependent manner. Incubation with CRE induced a significant suppression of IL-1beta and IFN-gamma-induced nitric oxide (NO) production, a finding which correlated well with reduced levels of the iNOS mRNA and protein. The molecular mechanism by which CRE inhibited iNOS gene expression appeared to involve the inhibition of NF-kappaB activation. The IL-1beta and IFN-gamma-stimulated RIN cells showed increases in NF-kappaB binding activity and p65 subunit levels in nucleus, and IkappaB alpha degradation in cytosol compared to unstimulated cells. Furthermore, the protective effects of CRE were verified via the observation of reduced NO generation and iNOS expression, and normal insulin-secretion responses to glucose in IL-1beta and IFN-gamma-treated islets.  相似文献   
56.
New poly(diphenylacetylene)s with alkoxy and fluoroalkyl groups as electron‐donating and electron‐withdrawing groups, respectively, were synthesized by using a WCl6n‐Ph4Sn catalyst. The polymer solutions emitted strong, bluish‐green lights when photo‐excited. The polymers that contained the electron‐donating alkoxy groups showed longer fluorescence‐maximum peaks when compared to the polymers that contained the electron‐withdrawing fluoroalkyl groups. However, such an effect of the substituent on the absorption property was not clearly seen. The emission bands of the solid films did not show any significant red shift, relative to that of the dilute solution.

  相似文献   

57.
The chemistry and composition of UV-sensitive resists are key factors determining the stress in the molded resist structure in UV nanoimprint lithography (UV-NIL) and thus the success of the process. The stress in the molded structure is mainly generated due to shrinkage of the resist in the UV curing step and also adhesion and friction at the stamp/resist interface in the subsequent demolding step. Thus, understanding of the stress generated in these steps is critical to the improvement of the process as well as the development of new UV resists. In this paper the effect of resist composition on the stress generation was studied by numerical simulations of the curing and demolding steps in UV-NIL. Parameters required for the simulation, such as resist shrinkage, Young's modulus, fracture strength, friction coefficient, crack initiation stress, and debonding energy, were determined experimentally for different resist compositions. As the cross-linking agent concentration increases the fracture strength also improves. In addition, as more cross-linking agent is added to the resist composition, both shrinkage stress due to the curing and also adhesion at the stamp/resist interface increase resulting in a larger maximum local stress experienced by the resist on demolding. By normalizing the overall maximum local stress by the fracture stress of the resist, we found that there is an optimum for the cross-linking agent concentration that leads to the most successful imprinting. Our finding is also corroborated by qualitative experimentations performed for UV-NIL with various resist compositions.  相似文献   
58.
There is a concentration-polarization (CP) force acting on a particle submerged in an electrolyte solution with a concentration (conductivity) gradient under an externally applied DC electric field. This force originates from the two mechanisms: (i) gradient of electrohydrodynamic pressure around the particle developed by the Coulombic force acting on induced free charges by the concentration polarization, and (ii) dielectric force due to nonuniform electric field induced by the conductivity gradient. A perturbation analysis is performed for the electric field, the concentration field, and the hydrodynamic field, under the assumptions of creeping flow and small concentration gradient. The leading order component of this force acting on a dielectric spherical particle is obtained by integrating the Maxwell and the hydrodynamic stress tensors. The analytical results are validated by comparing the surface pressure and the skin friction to those of a numerical analysis. The CP force is proportional to square of the applied electric field, effective for electrically neutral particles, and always directs towards the region of higher ionic concentration. The magnitude of the CP force is compared to that of the electrophoretic and the conventional dielectrophoretic forces.  相似文献   
59.
We demonstrate electrochemically controlled release of chemodosimeters attached to ultrathin patterned platinum electrodes. Fluorescence and electrochemical methods have been employed for the detection of chemodosimeter modification/desorption and Cu(2+) binding/removal.  相似文献   
60.
PtSn/θ-Al2O3 catalysts with different amounts of K (0.14, 0.22, 0.49, 0.72, and 0.96 wt%) are prepared to investigate the K effects on the PtSn catalyst in propane dehydrogenation (PDH). KPtSn catalyst with 0.xx wt% K, 0.5 wt% Pt and 0.75 wt% Sn is designated as xx-KPtSn. PDH was performed at 873 K and a gas hourly space velocity (GHSV) of 53,000 mL/gcat h. The temperature-programmed desorption (NH3-TPD), temperature-programmed reduction (TPR) and CO chemisorption of the KPtSn catalysts with K added revealed the potassium addition blocked the acid sites, promoted the reduction of Sn oxide and decreased the Pt dispersion. The formations of cracking products and higher hydrocarbons on acid sites were suppressed by the K effect of blocking the acid sites. In contrast, K addition at more than 0.72 wt% rather increased cracking products and the amount of coke, resulting in the severe deactivation of catalysts. The high cracking products on the KPtSn catalysts with the high amount of K should not be related to the acid sites, because the acid sites were monotonously decreased with an increase in the amount of K. Instead, the potassium affected the characteristics of PtSn. The interaction between Pt and Sn could be weakened by enriching the reduced Sn, because the K component promoted the reduction of Sn oxide in the TPR experiments. Therefore, the 14-KPtSn catalyst with the low amount of K exhibits the highest stability and selectivity among the prepared KPtSn catalysts due to the compromise of the advantageous (blocking the acid sites) and bad (weakening the interaction between Pt and Sn) effects of the K addition in PDH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号