首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7492篇
  免费   178篇
  国内免费   40篇
化学   4216篇
晶体学   49篇
力学   245篇
数学   1433篇
物理学   1767篇
  2022年   46篇
  2021年   61篇
  2020年   91篇
  2019年   85篇
  2018年   62篇
  2017年   69篇
  2016年   134篇
  2015年   108篇
  2014年   155篇
  2013年   340篇
  2012年   342篇
  2011年   459篇
  2010年   242篇
  2009年   205篇
  2008年   360篇
  2007年   372篇
  2006年   344篇
  2005年   316篇
  2004年   257篇
  2003年   238篇
  2002年   217篇
  2001年   165篇
  2000年   145篇
  1999年   102篇
  1998年   80篇
  1997年   97篇
  1996年   109篇
  1995年   101篇
  1994年   117篇
  1993年   125篇
  1992年   119篇
  1991年   98篇
  1990年   86篇
  1989年   98篇
  1988年   66篇
  1987年   82篇
  1986年   71篇
  1985年   114篇
  1984年   94篇
  1983年   57篇
  1982年   86篇
  1981年   87篇
  1980年   77篇
  1979年   77篇
  1978年   90篇
  1977年   69篇
  1976年   80篇
  1975年   74篇
  1974年   79篇
  1973年   105篇
排序方式: 共有7710条查询结果,搜索用时 31 毫秒
171.
We construct an analogue of the Feynman path integral for the case of % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS% aaaeaacaaIXaaabaGaamyAaaaadaWcaaqaaiabgkGi2cqaaiabgkGi% 2kaadshaaaqeduuDJXwAKbYu51MyVXgaiuaacqWFvpGAcaWG0bGaey% ypa0JaamisamaaBaaaleaacaGGOaaabeaakmaaBaaaleaacaGGPaaa% beaakiab-v9aQjaadshaaaa!4A8D!\[ - \frac{1}{i}\frac{\partial }{{\partial t}}\varphi t = H_( _) \varphi t\] in which H () is a self-adjoint operator in the space L 2(M)= % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSOaHmkaaa!3744!\[\mathbb{C}\], where M is a finite set, the paths being functions of % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSyhHekaaa!375D!\[\mathbb{R}\] with values in M. The path integral is a family of measures F t,t with values in the operators on L 2(M), or equivalently, a family of complex measures corresponding to matrix coefficients.It is shown that these measures on path space are in some sense dominated by the measure of a Markov process. This implies that F t,t is concentrated on the set of step functions S[t,t].This allows one to make sense of, and prove, the analogue of Feynman's formula for the propagator of the Hamiltonian H=H 0+V, where V is a potential, namely the formula: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyzamaaCa% aaleqabaGaeyOeI0IaamyAaiaacIcacaWG0bGaai4jaiabgkHiTiaa% dshacaGGPaGaamisaaaakiabg2da9maapebabaGaaeyzamaaCaaale% qabaGaeyOeI0IaamyAamaapedabaGaamOvaiaacIcatCvAUfKttLea% ryqr1ngBPrgaiuGacqWF4baEcaGGOaGaam4CaiaacMcacaGGPaGaae% izaiaabohaaWqaaiaadshaaeaacaWG0bGaai4jaaGdcqGHRiI8aaaa% kiaadAeadaWgaaWcbaGaamiDaiaacEcacaGGSaGaamiDaaqabaGcca% GGOaGaaeizaiab-Hha4jaacMcaaSqaaiaadofacaGGBbGaamiDaiaa% cYcacaWG0bGaai4jaiaac2faaeqaniabgUIiYdaaaa!6410!\[{\text{e}}^{ - i(t' - t)H} = \int_{S[t,t']} {{\text{e}}^{ - i\int_t^{t'} {V(x(s)){\text{ds}}} } F_{t',t} ({\text{d}}x)} \]and the corresponding formulas for the matrix coefficients, in which the integral extends over the paths beginning and ending in the appropriate points. We show that the measures F t,t are completely determined by these equations and by a certain multiplicative property.The path integral corresponding to a two-particle system without interaction is the direct product of the corresponding path integrals. The propagator for a two-particle system with interaction can be obtained by repeated integration.Finally, we show that the above integral formula can be generalized to the case where the potential is time dependent.  相似文献   
172.
A space Borel multiplies with a space if each Borel set of is a member of the -algebra in generated by Borel rectangles. We show that a regular space Borel multiplies with every regular space if and only if has a countable network. We give an example of a Hausdorff space with a countable network which fails to Borel multiply with any non-separable metric space. In passing, we obtain a characterization of those spaces which Borel multiply with the space of countable ordinals, and an internal necessary and sufficient condition for to Borel multiply with every metric space.

  相似文献   

173.
174.
175.
176.
177.
178.
179.
This paper deals with approximate analysis methods for open queueing networks. External and internal flows from and to the nodes are characterized by renewal processes with discrete time distributions of their interarrival times. Stationary distributions of the waiting time, the queue size and the interdeparture times are obtained using efficient discrete time algorithms for single server (GI/G/1) and multi-server (GI/D/c) nodes with deterministic service. The network analysis is extended to semi-Markovian representations of each flow among the nodes, which include parameters of the autocorrelation function.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号