首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3381篇
  免费   192篇
  国内免费   6篇
化学   2402篇
晶体学   5篇
力学   75篇
数学   621篇
物理学   476篇
  2023年   56篇
  2022年   45篇
  2021年   83篇
  2020年   99篇
  2019年   118篇
  2018年   62篇
  2017年   43篇
  2016年   155篇
  2015年   125篇
  2014年   140篇
  2013年   179篇
  2012年   223篇
  2011年   238篇
  2010年   136篇
  2009年   94篇
  2008年   152篇
  2007年   141篇
  2006年   142篇
  2005年   127篇
  2004年   96篇
  2003年   72篇
  2002年   74篇
  2001年   28篇
  2000年   24篇
  1999年   25篇
  1998年   33篇
  1997年   30篇
  1996年   36篇
  1995年   25篇
  1994年   28篇
  1993年   48篇
  1992年   26篇
  1991年   20篇
  1990年   24篇
  1989年   20篇
  1988年   31篇
  1987年   35篇
  1986年   26篇
  1985年   33篇
  1984年   30篇
  1983年   26篇
  1982年   22篇
  1981年   23篇
  1980年   25篇
  1979年   14篇
  1978年   16篇
  1976年   18篇
  1974年   23篇
  1972年   14篇
  1969年   14篇
排序方式: 共有3579条查询结果,搜索用时 15 毫秒
31.
We report on single-pass high-harmonic generation (HHG) with amplified driving laser pulses at a repetition rate of 20.8?MHz. An Yb:YAG Innoslab amplifier system provides 35?fs pulses with 20?W average power at 1030?nm after external pulse compression. Following tight focusing into a xenon gas jet, we observe the generation of high-harmonic radiation of up to the seventeenth order. Our results show that state-of-the-art amplifier systems have become a promising alternative to cavity-assisted HHG for applications that require high repetition rates, such as frequency comb spectroscopy in the extreme UV.  相似文献   
32.
Nickel islands are grown on W(110) at elevated temperatures. Islands with a thickness of two layers are investigated with scanning tunneling microscopy. Spectroscopic measurements reveal that nanometer sized areas of the islands exhibit distinctly different apparent heights and dI/dVspectra. Spin polarized and paramagnetic band structure calculations indicate that the spectral features are due to fcc(111) and bcc(110) orientations of the Ni film, respectively.  相似文献   
33.
In this article, the electromagnetic (EM) field in gap‐mode tip‐enhanced Raman spectroscopy (TERS) is investigated theoretically and experimentally for a range of commonly used and unusual metal and nonmetal substrates. By approaching a metal tip to a substrate, both form a coupled system that confines the EM field created at the tip apex. The influence of the substrate onto the EM field enhancement is observed in a top‐illumination gap‐mode TERS setup for different metal substrates. These include Au, the most commonly used substrate, and also a wide range of rarely or previously unused TERS substrates (Cu, Ag, Al, Pd, Pt, Ni, Ti, Mo, W, stainless steel, Al2O3, SiO2). Self‐assembled monolayers of thiols and brilliant cresyl blue thin film samples are investigated experimentally on nine metal substrates, all showing considerable TERS enhancement. With finite difference time domain and finite element simulations used, the article provides a good estimate of the EM field enhancement for a wide range of substrates for users to estimate how well a substrate of choice will perform in a gap‐mode TERS experiment. The reduction in EM field strength |E2| compared with Au is less than an order of magnitude for many metals (Calculations: Cu 92%, Ag 81%, Ni 53%). This article experimentally shows that a wide variety of conductive substrates can be used, when one is willing to trade a fraction of the EM field enhancement. TERS was seen on all metal substrates including stainless steel, yet quantification was not always possible. These qualitative results were complemented with intensities from calculations. The wider variety of substrates will increase the applicability of TERS and evolve it one step further towards use in standard analytics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
34.
State-of-the-art spectroscopy of nuclei far from stability has achieved an extraordinary level of sophistication and detail in the last ten years. In principle, if a state can be populated, it can be characterized by its energy, spin, parity, and major decay paths. Sometimes its lifetime can be measured. In practice, one is confronted with enormous complexity. To convert raw spectroscopic data into nuclear structure data involves a complex process of disentangling gamma rays and conversion electrons into decay schemes. Specifically, coincidence techniques, especially coincidence intensities, play a crucial role in this process. Recent examples and methods from work done at UNISOR are presented.  相似文献   
35.
Graphene nanostructures are promising candidates for future nanoelectronics and solid-state quantum information technology. In this review we provide an overview of a number of electron transport experiments on etched graphene nanostructures. We briefly revisit the electronic properties and the transport characteristics of bulk, i.e., two-dimensional graphene. The fabrication techniques for making graphene nanostructures such as nanoribbons, single electron transistors and quantum dots, mainly based on a dry etching ??paper-cutting?? technique are discussed in detail. The limitations of the current fabrication technology are discussed when we outline the quantum transport properties of the nanostructured devices. In particular we focus here on transport through graphene nanoribbons and constrictions, single electron transistors as well as on graphene quantum dots including double quantum dots. These quasi-one-dimensional (nanoribbons) and quasi-zero-dimensional (quantum dots) graphene nanostructures show a clear route of how to overcome the gapless nature of graphene allowing the confinement of individual carriers and their control by lateral graphene gates and charge detectors. In particular, we emphasize that graphene quantum dots and double quantum dots are very promising systems for spin-based solid state quantum computation, since they are believed to have exceptionally long spin coherence times due to weak spin-orbit coupling and weak hyperfine interaction in graphene.  相似文献   
36.

Background  

Interruption of mature axons activates a cascade of events in neuronal cell bodies which leads to various outcomes from functional regeneration in the PNS to the failure of any significant regeneration in the CNS. One factor which seems to play an important role in the molecular programs after axotomy is the stearoyl Coenzyme A-desaturase-1 (SCD-1). This enzyme is needed for the conversion of stearate into oleate. Beside its role in membrane synthesis, oleate could act as a neurotrophic factor, involved in signal transduction pathways via activation of protein kinases C.  相似文献   
37.
An ultrahigh-speed spectral domain optical coherence tomography (SD-OCT) system is presented that achieves acquisition rates of 29,300 depth profiles/s. The sensitivity of SD-OCT and time domain OCT (TD-OCT) are experimentally compared, demonstrating a 21.7-dB improvement of SD-OCT over TD-OCT. In vivo images of the human retina are presented, demonstrating the ability to acquire high-quality structural images with an axial resolution of 6 microm at ultrahigh speed and with an ocular exposure level of less than 600 microW.  相似文献   
38.
Because meningiomas tend to recur after (partial) surgical resection, radiotherapy is increasingly being applied for the treatment of these tumors. Radiation dose levels are limited, however, to avoid radiation damage to the surrounding normal tissue. The radiosensitivity of tumors can be improved by increasing tumor oxygen levels. The aim of this study was to investigate if breathing a hyperoxic hypercapnic gas mixture could improve the oxygenation of meningiomas. Blood oxygen level-dependent magnetic resonance imaging and dynamic Gadolinium (Gd)-DTPA contrast-enhanced MRI were used to assess changes in tumor blood oxygenation and vascularity, respectively. Ten meningioma patients were each studied twice; without and with breathing a gas mixture consisting of 2% CO(2) and 98% O(2). Values of T(2)* and the Gd-DTPA uptake rate k(ep) were calculated under both conditions. In six tumors a significant increase in the value of T(2)* in the tumor was found, suggesting an improved tumor blood oxygenation, which exceeded the effect in normal brain tissue. Contrarily, two tumors showed a significant T(2)* decrease. The change in T(2)* was found to correlate with both k(ep) and with the change in k(ep). The presence of both vascular effects and oxygenation effects and the heterogeneous response to hypercapnic hyperoxia necessitates individual assessment of the effects of breathing a hyperoxic hypercapnic gas mixture on meningiomas. Thus, the current MRI protocol may assist in radiation treatment selection for patients with meningiomas.  相似文献   
39.
Laser synthesis of nanostructured ceramics from liquid precursors   总被引:1,自引:0,他引:1  
The free-form net shape laser synthesis of nanostructured ceramics from liquid precursors enables a residual stress-free production of high temperature resistant ceramic units and components for the use in microsystem engineering. Due to the use of molecular compounded liquid, ceramic precursors the resulting ceramic components show outstanding properties, for example high purity and a nanostructured material design.The use of pulsed lasers enables a defined input of energy required to pyrolyse the precursor material into a crystalline ceramic, so the active volume can be reduced significantly compared to other processes, for example pyrolysis by furnace.In this paper several methods for a further minimization of the active volume are presented. The investigations determined different factors affecting the process. Realizing selective experiments allows a determination of their influencing level and the definition of a working area to produce three-dimensional components with high aspect ratio.By several studies, e.g., scanning electron microscopy, transmission electron microscopy as well as X-ray diffraction analysis, the atomic structure and composition of the created components were analyzed and valued, so the different reaction processes can be described extensively.  相似文献   
40.
We report two experiments on graphene nanostructures. The first was performed on a graphene nanoribbon, where the nature of electronic transport was investigated in detail. Electrons or holes are found to localize in pockets of the potential along the ribbon. Transport is governed by the joint action of localization and Coulomb interaction. The temperature-dependence of the conductance shows activated behavior at temperatures above a few Kelvin. The activation energy retraces the edges of Coulomb blockade diamonds found in nonlinear transport. In the second experiment the metallic tip of a low-temperature scanning force microscope was scanned above a graphene quantum dot. In addition to the familiar Coulomb blockade fringes, localized states are detected forming in the constrictions connecting the dot to source and drain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号