首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3264篇
  免费   188篇
  国内免费   6篇
化学   2337篇
晶体学   5篇
力学   75篇
数学   615篇
物理学   426篇
  2023年   52篇
  2022年   44篇
  2021年   81篇
  2020年   97篇
  2019年   113篇
  2018年   61篇
  2017年   41篇
  2016年   154篇
  2015年   125篇
  2014年   139篇
  2013年   177篇
  2012年   217篇
  2011年   235篇
  2010年   135篇
  2009年   92篇
  2008年   147篇
  2007年   136篇
  2006年   137篇
  2005年   127篇
  2004年   95篇
  2003年   70篇
  2002年   73篇
  2001年   27篇
  2000年   24篇
  1999年   23篇
  1998年   33篇
  1997年   30篇
  1996年   33篇
  1995年   25篇
  1994年   24篇
  1993年   44篇
  1992年   26篇
  1991年   19篇
  1990年   22篇
  1989年   20篇
  1988年   30篇
  1987年   35篇
  1986年   24篇
  1985年   32篇
  1984年   29篇
  1983年   25篇
  1982年   21篇
  1981年   20篇
  1980年   24篇
  1979年   12篇
  1978年   16篇
  1976年   15篇
  1974年   21篇
  1966年   12篇
  1909年   11篇
排序方式: 共有3458条查询结果,搜索用时 15 毫秒
21.
22.
ABSTRACT

Local sensitivity information is obtained for KKT points of parametric NLPs that may exhibit active set changes under parametric perturbations; under appropriate regularity conditions, computationally relevant generalized derivatives of primal and dual variable solutions of parametric NLPs are calculated. Ralph and Dempe obtained directional derivatives of solutions of parametric NLPs exhibiting active set changes from the unique solution of an auxiliary quadratic program. This article uses lexicographic directional derivatives, a newly developed tool in nonsmooth analysis, to generalize the classical NLP sensitivity analysis theory of Ralph and Dempe. By viewing said auxiliary quadratic program as a parametric NLP, the results of Ralph and Dempe are applied to furnish a sequence of coupled QPs, whose unique solutions yield generalized derivative information for the NLP. A practically implementable algorithm is provided. The theory developed here is motivated by widespread applications of nonlinear programming sensitivity analysis, such as in dynamic control and optimization problems.  相似文献   
23.
The top-down fabrication of catalytically active molecular metal oxide anions, or polyoxometalates, is virtually unexplored, although these materials offer unique possibilities, for catalysis, energy conversion and storage. Here, we report a novel top-down route, which enables the scalable synthesis and deposition of sub-nanometer molybdenum-oxo clusters on electrically conductive mesoporous carbon. The new approach uses a unique redox-cycling process to convert crystalline MoIVO2 particles into sub-nanometer molecular molybdenum-oxo clusters with a nuclearity of ∼1–20. The resulting molybdenum-oxo cluster/carbon composite shows outstanding, stable electrocatalytic performance for the oxygen reduction reaction with catalyst characteristics comparable to those of commercial Pt/C. This new material design could give access to a new class of highly reactive polyoxometalate-like metal oxo clusters as high-performance, earth abundant (electro-)catalysts.

The top-down synthesis and deposition of polyoxometalate-like clusters on porous carbon is reported together with the high electrocatalytic oxygen reduction reactivity of the composite.  相似文献   
24.
In comparison to other eukaryotic cells, mammalian oocytes are characterised by a relative high diameter allowing in turn a straightforward micromechanical testing to study their mechanical properties. The structure of mammalian oocytes is characterised by the so-called zona pellucida (ZP), a thick glycoprotein layer, surrounding the cells interior, the ooplasm. In contrast to other cells, where the load is mainly carried by inner cell structures, in case of oocytes a huge amount of external loads is carried by the ZP. Aim of this work is the determination of the mechanical properties of oocytes. Therefore, a micromechanical setup has been developed and installed on a microscope. Beside the determination of the force-strain relation during loading, the deformation of the oocytes has been recorded optically, too. Both, the force-strain curves and the optical recordings build the basis for a proper parameter identification technique based on the inverse finite element method. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
25.
We present and discuss a modification of instrumental neutron activation analysis (INAA) that is sensitive for nuclides that do not yield (suitable) activation products but have high cross sections for neutron absorption. Their presence in a sample may thwart INAA by neutron flux suppression inside the sample, but they remain undetected and thus unnoticed by the analyst. In particular, this refers to Li, B, Cd and Gd. The proposed method—instrumental neutron absorption activation analysis (INAAA)—takes advantage of the flux depression inside the sample caused by the neutron absorbers. It is made visible by addition of an activatable nuclide (indicator). The concentration of the neutron absorber (analyte) causes a decrease in activity of the indicator. The activity difference between a mixed sample (sample plus indicator) and the pure indicator carries the analytical information. The calibration curve hence follows a reciprocal exponential function. In a proof-of-principle experiment, the applicability for the quantification of boron was exemplified. In presence of only one neutron absorber (whose nature is known), INAAA can be applied easily for quantification of the analyte in powdered or liquid samples. Although INAAA is no trace sensitive method, it has the potential to increase the reliability of INAA analyses by fast and straightforward quality control (even in presence of two or more neutron absorbing nuclides). It is especially suited for research reactors that do not operate a prompt gamma neutron activation analysis (PGNAA) station.  相似文献   
26.
27.
For the implementation of thin ceramic hard coatings into intensive application environments, the fracture toughness is a particularly important material design parameter. Characterisation of the fracture toughness of small-scale specimens has been a topic of great debate, due to size effects, plasticity, residual stress effects and the influence of ion penetration from the sample fabrication process. In this work, several different small-scale fracture toughness geometries (single-beam cantilever, double-beam cantilever and micro-pillar splitting) were compared, fabricated from a thin physical vapour-deposited ceramic film using a focused ion beam source, and then the effect of the gallium-milled notch on mode I toughness quantification investigated. It was found that notching using a focused gallium source influences small-scale toughness measurements and can lead to an overestimation of the fracture toughness values for chromium nitride (CrN) thin films. The effects of gallium ion irradiation were further studied by performing the first small-scale high-temperature toughness measurements within the scanning electron microscope, with the consequence that annealing at high temperatures allows for diffusion of the gallium to grain boundaries promoting embrittlement in small-scale CrN samples. This work highlights the sensitivity of some materials to gallium ion penetration effects, and the profound effect that it can have on fracture toughness evaluation.  相似文献   
28.
A wealth of studies have confirmed that the low‐field hysteresis behaviour of ferroelectric bulk ceramics and thin films can be described using Rayleigh relations, and irreversible domain wall motion across the array of pining defects has been commonly accepted as the underlying micro‐mechanism. Recently, HfO2 thin films incorporated with various dopants were reported to show pronounced ferroelectricity, however, their microscopic domain structure remains unclear till now. In this work, the effects of the applied electric field amplitude, frequency and temperature on the sub‐coercive polarization reversal properties were investigated for 10 nm thick Si‐doped HfO2 thin films. The applicability of the Rayleigh law to ultra‐thin ferroelectric films was first confirmed, indicating the existence of a multi‐domain structure. Since the grain size is about 20–30 nm, a direct observation of domain walls within the grains is rather challenging and this indirect method is a feasible approach to resolve the domain structure. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
29.
Desorption/ionization mass spectrometry (DI-MS) approaches allow for the rapid quantification of drugs in biological matrices using assays that can be validated according to regulatory guidelines. However, specific adaptations must be applied to create reliable quantification methods, depending on the approach and instrumentation used. In the present article, we demonstrate the importance of the molecular weight, the fragmentation pattern, and the purity of the internal standard for the development of matrix-assisted laser desorption/ionization (MALDI)-ion mobility (IM)-tandem MS and MS/MS methods. We present preliminary results of method development for the quantification of selinexor in microdialysis fluids with a stable isotopically labeled internal standard. In addition, we discuss the selection of internal standards for MALDI-MS assays using different instrumentations.  相似文献   
30.
We have used soft X-ray resonant magnetic scattering (XRMS) to search for the presence of an effective ferromagnetic moment belonging to the antiferromagnetic (AF) layer which is in close contact with a ferromagnetic (F) layer. Taking advantage of the element specificity of the XRMS technique, we have measured hysteresis loops of both Fe and CoO layers of a CoO(40 Å)/Fe (150 Å) exchange bias bilayer. From these measurements we have concluded that the proximity of the F layer induces a magnetic moment in the AF layer. The F moment of the AF layer has two components: one is frozen and does not follow the applied magnetic field and the other one follows in phase the ferromagnetic magnetization of the F layer. The temperature dependence of the F components belonging to the AF layer is shown and discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号