首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2038篇
  免费   63篇
  国内免费   5篇
化学   1507篇
晶体学   2篇
力学   42篇
数学   235篇
物理学   320篇
  2023年   15篇
  2022年   23篇
  2021年   33篇
  2020年   47篇
  2019年   32篇
  2018年   32篇
  2017年   23篇
  2016年   60篇
  2015年   71篇
  2014年   61篇
  2013年   145篇
  2012年   103篇
  2011年   155篇
  2010年   105篇
  2009年   90篇
  2008年   115篇
  2007年   109篇
  2006年   134篇
  2005年   132篇
  2004年   91篇
  2003年   80篇
  2002年   78篇
  2001年   18篇
  2000年   16篇
  1999年   19篇
  1998年   20篇
  1997年   17篇
  1996年   26篇
  1995年   20篇
  1994年   17篇
  1993年   17篇
  1992年   17篇
  1991年   11篇
  1990年   23篇
  1989年   5篇
  1988年   14篇
  1987年   16篇
  1986年   13篇
  1985年   5篇
  1984年   7篇
  1983年   10篇
  1982年   5篇
  1981年   6篇
  1980年   10篇
  1979年   10篇
  1978年   6篇
  1977年   8篇
  1976年   9篇
  1975年   4篇
  1973年   5篇
排序方式: 共有2106条查询结果,搜索用时 17 毫秒
131.
Examination by high temperature GC (HTGC) of the methyl esters of the so-called 'ARN' naphthenic acids from crude oils of North Sea UK, Norwegian Sea and West African oilfields revealed the distributions of resolved 4-8 ring C80 tetra acids and trace amounts of other acids. Whilst all three oils contained apparently the same major acids, the proportions of each differed, possibly reflecting the growth temperatures of the archaebacteria from which the acids are assumed to have originated. The structures of the 4, 5, 7 and 8 ring acids are tentatively assigned by comparison with the known 6 ring acid and related natural products and an HPLC method for the isolation of the individual acids is described. ESI-MS of individual acids isolated by preparative HPLC established the elution order of the 4-8 ring acids on the HPLC and HTGC systems and revealed the presence of previously unreported acids tentatively identified as C81 and C82 7 and 8 ring analogues.  相似文献   
132.
We present analytical results on the so-called end-evaporation kinetics in equilibrium polymeric systems following a temperature jump (T jump). A T jump prepares the system with a nonequilibrium length distribution, after which it relaxes back to its equilibrium state. Starting from a master equation, we develop a mean-field analytical theory based on a generating function approach, which allows explicit approximate expressions for the monomer and dimer concentrations to be derived in a discrete setting; the concentrations of the other chains as well as the average chain length were shown to be entirely expressible in terms of the monomer and dimer concentrations. We find that the calculated monomer and dimer concentrations as well as the average chain length are in good agreement with numerical simulation results and do not suffer from some of the defects of earlier continuum theories. Furthermore, the relaxation was shown to take place in three different stages. The first stage comprises the very fast relaxation of the monomers to almost their equilibrium concentration; the other polymer chains have hardly relaxed. During the second stage, which is highly nonlinear, a redistribution of material at practically constant monomer density takes place. Only in the final stage of the relaxation process the chain concentrations approach their true equilibrium values. In this stage there are only very small shifts in the concentrations of chains, which are governed by extremely slow "indirect" monomer-mediated processes.  相似文献   
133.
During this work, a novel series of hydrophobic room temperature ionic liquids (ILs) based on five ether functionalized sulfonium cations bearing the bis{(trifluoromethyl)sulfonyl}imide, [NTf2]? anion were synthesized and characterized. Their physicochemical properties, such as density, viscosity and ionic conductivity, electrochemical window, along with thermal properties including phase transition behavior and decomposition temperature, have been measured. All of these ILs showed large liquid range temperature, low viscosity, and good conductivity. Additionally, by combining DFT calculations along with electrochemical characterization it appears that these novel ILs show good electrochemical stability windows, suitable for the potential application as electrolyte materials in electrochemical energy storage devices.  相似文献   
134.
An original, halide-free non-hydrolytic sol–gel route to mesoporous anatase TiO2 with hierarchical porosity and high specific surface area is reported. This route is based on the reaction at 200 °C of titanium(IV) isopropoxide with acetic anhydride, in the absence of a catalyst or solvent. NMR spectroscopic studies indicate that this method provides an efficient, truly non-hydrolytic and aprotic route to TiO2. Formation of the oxide involves successive acetoxylation and condensation reactions, both with ester elimination. The resulting TiO2 materials were nanocrystalline, even before calcination. Small (about 10 nm) anatase nanocrystals spontaneously aggregated to form mesoporous micron-sized particles with high specific surface area (240 m2 g−1 before calcination). Evaluation of the lithium storage performances shows a high reversible specific capacity, particularly for the non-calcined sample with the highest specific surface area favouring pseudo-capacitive storage: 253 mAh g−1 at 0.1 C and 218 mAh g−1 at 1 C (C=336 mA g−1). This sample also shows good cyclability (92 % retention after 200 cycles at 336 mA g−1) with a high coulombic efficiency (99.8 %). Synthesis in the presence of a solvent (toluene or squalane) offers the possibility to tune the morphology and texture of the TiO2 nanomaterials.  相似文献   
135.
The development of a general organocatalyst for the alpha-functionalization of aldehydes, via an enamine intermediate, is presented. Based on optically active alpha,alpha-diarylprolinol silyl ethers, the scope and applications of this catalyst for the stereogenic formation of C-C, C-N, C-F, C-Br, and C-S bonds are outlined. The reactions all proceed in good to high yields and with excellent enantioselectivities. Furthermore, we will present mechanistic insight into the reaction course applying nonlinear effect studies, kinetic resolution, and computational investigations leading to an understanding of the properties of the alpha,alpha-diarylprolinol silyl ether catalysts.  相似文献   
136.
The role of the concentration and the nature of aluminium in the creation of hierarchical porosity in both commercial and synthesized MFI zeolites have been investigated through controlled mesoporosity development by desilication in alkaline medium. Framework aluminium controls the process of framework silicon extraction and makes desilication selective towards intracrystalline mesopore formation. An optimal molar Si/Al ratio in the range 25-50 has been identified; this leads to an optimal mesoporosity centred around 10 nm and mesopore surface areas of up to 235 m(2) g(-1) while preserving the intrinsic crystalline and acidic properties. At lower framework Si/Al ratios the relatively high Al content inhibits Si extraction and hardly any mesopores are created, while in highly siliceous ZSM-5 unselective extraction of framework Si induces formation of large pores. The existence of framework Al sites in different T positions that are more or less susceptible to the alkaline treatment, and the occurrence of re-alumination, are tentative explanations for the remarkable behaviour of Al in the desilication process. The presence of substantial extra framework Al, obtained by steam treatment, inhibits Si extraction and related mesopore formation; this is attributed to re-alumination of the extraframework Al species during the alkaline treatment. Removal of extraframework Al species by mild oxalic acid treatment restores susceptibility to desilication, which is accompanied by formation of larger mesopores due to the enhanced Si/Al ratio in the acid-treated zeolite.  相似文献   
137.
A flow-through microdispenser has been coupled to a micro HPLC separation system and used as a solvent elimination interface for Fourier transform infrared (FTIR) and Raman spectroscopic detection of the separated compounds. Using the microdispenser picoliter sized droplets can be generated and deposited on an appropriate target placed on a computerized x, y-stage. Evaporation of volatile solvent and buffer is rapid and allows analysis of the obtained dry deposits by various techniques. Due to the destruction free character of Raman and FTIR spectroscopy they can be applied sequentially to interrogate the same deposit. In the reported application five phenolic acids typically present in wine have been separated on a C-18 column technique using a mixture of water, methanol and acetic acid as mobile phase. For spectrum acquisition infrared and Raman microscopes have been used. The spectra recorded from the dried deposits of the separated compounds agreed well with the reference spectra of corresponding components.  相似文献   
138.
Carbon nanotubes (CNTs) constitute a class of nanomaterials that possess characteristics suitable for a variety of possible applications. Their compatibility with aqueous environments has been made possible by the chemical functionalization of their surface, allowing for exploration of their interactions with biological components including mammalian cells. Functionalized CNTs (f-CNTs) are being intensively explored in advanced biotechnological applications ranging from molecular biosensors to cellular growth substrates. We have been exploring the potential of f-CNTs as delivery vehicles of biologically active molecules in view of possible biomedical applications, including vaccination and gene delivery. Recently we reported the capability of ammonium-functionalized single-walled CNTs to penetrate human and murine cells and facilitate the delivery of plasmid DNA leading to expression of marker genes. To optimize f-CNTs as gene delivery vehicles, it is essential to characterize their interactions with DNA. In the present report, we study the interactions of three types of f-CNTs, ammonium-functionalized single-walled and multiwalled carbon nanotubes (SWNT-NH3+; MWNT-NH3+), and lysine-functionalized single-walled carbon nanotubes (SWNT-Lys-NH3+), with plasmid DNA. Nanotube-DNA complexes were analyzed by scanning electron microscopy, surface plasmon resonance, PicoGreen dye exclusion, and agarose gel shift assay. The results indicate that all three types of cationic carbon nanotubes are able to condense DNA to varying degrees, indicating that both nanotube surface area and charge density are critical parameters that determine the interaction and electrostatic complex formation between f-CNTs with DNA. All three different f-CNT types in this study exhibited upregulation of marker gene expression over naked DNA using a mammalian (human) cell line. Differences in the levels of gene expression were correlated with the structural and biophysical data obtained for the f-CNT:DNA complexes to suggest that large surface area leading to very efficient DNA condensation is not necessary for effective gene transfer. However, it will require further investigation to determine whether the degree of binding and tight association between DNA and nanotubes is a desirable trait to increase gene expression efficiency in vitro or in vivo. This study constitutes the first thorough investigation into the physicochemical interactions between cationic functionalized carbon nanotubes and DNA toward construction of carbon nanotube-based gene transfer vector systems.  相似文献   
139.
To resolve the molecular basis of the coloration mechanism of alpha-crustacyanin, we used (13)C-labeled astaxanthins as chromophores for solid-state (13)C NMR and resonance Raman spectroscopy of [6,6',7,7']-(13)C(4) alpha-crustacyanin and [8,8',9,9',10,10',11,11',20,20']-(13)C(10) alpha-crustacyanin. We complement the experimental data with time-dependent density functional theory calculations on several models based on the structural information available for beta-crustacyanin. The data rule out major changes and strong polarization effects in the ground-state electron density of astaxanthin upon binding to the protein. Conformational changes in the chromophore and hydrogen-bond interactions between the astaxanthin and the protein can account only for about one-third of the total bathochromic shift in alpha-crustacyanin. The exciton coupling due to the proximity of two astaxanthin chromophores is found to be large, suggesting that aggregation effects in the protein represent the primary source of the color change.  相似文献   
140.
The electropolymerization of a series of Ru and Os bis-terpyridine complexes that form rodlike polymers with bithienyl, quaterthienyl, or hexathienyl bridges has been studied. Absorption spectroscopy, scanning electron microscopy, and cyclic voltammetry have been used to characterize the monomers and resulting polymer films. The absolute dc conductivity of the quaterthienyl-bridged {Ru(tpy)2} and {Os(tpy)2} polymers is unusually large and independent of the identity of the metal center at 1.6 x 10(-3) S cm(-1). The maximum conductivity occurs at the formal potential of each redox process, which typically is observed for systems where redox conduction is the dominant charge transport mechanism. Significantly, the dc conductivity of the metal-based redox couple observed in these polymers is 2 orders of magnitude higher thanthat of a comparable nonconjugated system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号