首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51775篇
  免费   10415篇
  国内免费   3440篇
化学   51824篇
晶体学   588篇
力学   1402篇
综合类   188篇
数学   3528篇
物理学   8100篇
  2024年   35篇
  2023年   277篇
  2022年   563篇
  2021年   729篇
  2020年   1771篇
  2019年   3060篇
  2018年   1456篇
  2017年   1107篇
  2016年   4031篇
  2015年   4128篇
  2014年   4217篇
  2013年   5147篇
  2012年   4348篇
  2011年   3596篇
  2010年   3812篇
  2009年   3674篇
  2008年   3326篇
  2007年   2563篇
  2006年   2318篇
  2005年   2403篇
  2004年   2034篇
  2003年   1852篇
  2002年   2589篇
  2001年   1772篇
  2000年   1653篇
  1999年   722篇
  1998年   316篇
  1997年   285篇
  1996年   259篇
  1995年   241篇
  1994年   192篇
  1993年   174篇
  1992年   166篇
  1991年   140篇
  1990年   125篇
  1989年   100篇
  1988年   89篇
  1987年   64篇
  1986年   64篇
  1985年   69篇
  1984年   40篇
  1983年   29篇
  1982年   25篇
  1981年   23篇
  1980年   12篇
  1979年   7篇
  1974年   4篇
  1971年   2篇
  1957年   6篇
  1911年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Various phase behavior of blends of poly(vinyl ether)s with homologous acrylic polymers (polymethacrylates or polyacrylates) were examined using differential scanning calorimetry, optical microscopy (OM), and Fourier‐transformed infrared spectroscopy. Effects of varying the pendant groups of either of constituent polymers on the phase behavior of the blends were analyzed. A series of interestingly different phase behavior in the blends has been revealed in that as the pendant group in the acrylic polymer series gets longer, polymethacrylate/poly(vinyl methyl ether) (PVME) blends exhibit immiscibility, upper critical solution temperature (UCST), and miscibility, respectively. This study found that the true phase behavior of poly(propyl methacrylate)/PVME [and poly(isopropyl methacrylate)/PVME)] blend systems, though immiscible at ambient, actually displayed a rare UCST upon heating to higher temperatures. Similarly, as the methyl pendant group in PVE is lengthened to ethyl (i.e., PVME replaced by PVEE), phase behavior of its blends with series of polymethacrylates or polyacrylates changes correspondingly. Analyses and quantitative comparisons on four series of blends of PVE/acrylic polymer were performed to thoroughly understand the effects of pendant groups in either polyethers (PVE's) or acrylic polymers on the phase behavior of the blends of these two constituents. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1521–1534, 2007  相似文献   
102.
Three novel zinc complexes [Zn(dbsf)(H2O)2] ( 1 ), [Zn(dbsf)(2,2′‐bpy)(H2O)]·(i‐C3H7OH) ( 2 ) and [Zn(dbsf)(DMF)] ( 3 ) (H2dbsf = 4,4′‐dicarboxybiphenyl sulfone, 2,2′‐bpy = 2,2′‐bipyridine, i‐C3H7OH = iso‐propanol, DMF = N,N‐dimethylformamide) were first obtained and characterized by single crystal X‐ray crystallography. Although the results show that all the complexes 1–3 have one‐dimensional chains formed via coordination bonds, unique three‐dimensional supramolecular structures are formed due to different coordination modes and configuration of the dbsf2? ligand, hydrogen bonds and π–π interactions. Iso‐propanol molecules are in open channels of 2 while larger empty channels are formed in 3 . As compared with emission band of the free H2dbsf ligand, emission peaks of the complexes 1–3 are red‐shifted, and they show blue emission, which originates from enlarging conjugation upon coordination. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
103.
Cationic polyelectrolytes were synthesized and used as semipermanent coating materials for capillaries in electrophoresis. The polyelectrolytes used were a homopolymer of poly(methacryl oxyethyl trimethylammonium chloride) (PMOTAC) and its poly(ethylene glycol) (PEG)‐grafted analogue. Two PMOTAC polyelectrolytes, with molar masses of 85,000 and 300,000 g/mol, and PEG‐grafted PMOTAC with a molar mass of 280,000 g/mol were synthesized and then characterized by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. Attachment of the polyelectrolytes to the wall of the fused silica capillary for electrophoresis caused the electroosmotic flow (EOF) to reverse. The polyelectrolyte coatings were tested over the pH range 2–11 at different buffer ionic strengths, and the most stable and strongest anodic EOFs were obtained at acidic pH values with low ionic strength buffers. Between runs the capillary is merely rinsed for 2 or 3 min with the background electrolyte solution. With the PMOTAC coatings at pH values ≤5, the RSDs of the EOFs were less than 2.9% after 60 injections. The effects of the molar mass of the polycation and of PEGylation of PMOTAC on the interactions between the polycations and basic proteins were studied at acidic pH values. The differences in the effective electrophoretic mobilities, resolution values, and plate numbers of the proteins with the different coatings were due to the EOF, as demonstrated through calculations of reduced mobilities, relative resolution values, and relative plate numbers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2655–2663, 2007  相似文献   
104.
In this contribution, we demonstrate a new effective methodology for constructing highly efficient and durable poly(p‐phenyleneethynylene) (PPE) containing emissive material with nonaggregating and hole‐facilitating properties through the introduction of hole‐transporting blocks into the PPE system as the grafting coils as well as building the energy donor–acceptor architecture between the grafting coils and the PPE backbone. Poly(2‐(carbazol‐9‐yl)ethyl methacrylate) (PCzEMA), herein, is chosen as the hole‐transporting blocks, and incorporated into the PPE system as the grafting coils via atom transfer radical polymerization. The chemical structure of the resultant copolymer, PPE‐g‐PCzEMA, was characterized by NMR and gel permeation chromatography, showing that the desirable copolymer was obtained with the narrow polydispersity. The increased thermal stability of PPE‐g‐PCzEMA was confirmed by thermogravimetric analysis and differential scanning calorimetry along with its macroinitiator. The optoelectronic properties of this copolymer were studied in detail by ultraviolet‐visible absorption, photoluminescence emission and excitation spectra, and cyclic voltammogram (CV). The results indicate that PPE‐g‐PCzEMA exhibits the solid‐state luminescent property dominated by individual lumophores, and also the energy transfer process from the PCzEMA blocks to the PPE backbone with a relatively higher energy transfer efficiency in the solid‐state compared to that of the solution state. Additionally, the hole‐injection property is greatly facilitated due to the presence of PCzEMA, as confirmed by CV profiles. All these data indicate that PPE‐g‐PCzEMA is a good candidate for use in optoelectronic devices. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3776–3787, 2007  相似文献   
105.
A new biodegradable starch graft copolymer, starch‐g‐poly(1,4‐dioxan‐2‐one), was synthesized through the ring‐opening graft polymerization of 1,4‐dioxan‐2‐one onto a starch backbone. The grafting reactions were conducted with various 1,4‐dioxan‐2‐one/starch feed ratios to obtain starch‐g‐poly(1,4‐dioxan‐2‐one) copolymers with various poly(1,4‐dioxan‐2‐one) graft structures. The microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was characterized in detail with one‐ and two‐dimensional NMR spectroscopy. The effect of the feed composition on the resulting microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3417–3422, 2004  相似文献   
106.
Spatio temporal dynamics of the positive column of a dc neon glow discharge is studied and investigated experimentally and theoretically. Spatio temporal analysis by means of biorthogonal decomposition method (BOD) gives insights into the mechanism of irregularity and can be employed for characterization of spatio‐ temporal complexity. In the weak nonlinear region, the wave dynamics is approximated by an amplitude equation of the Ginzburg‐Landau equation (CGLE) with complex coefficients and an additional integral term based on a fluid model. In the present work we deal with irregular spatio‐temporal data. A comparison between the numerical analysis of the experimental data and simulation results are studied. A good agreement between the dynamical behaviour for experimental space‐time data and theoretical simulation space‐time results was obtained. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
107.
Three novel functionalized polynorbornenes (PNB) with pendant dimethyl carboxylate group (carboxylates—acetate, propionate, and butyrate) are synthesized as a vinyl‐type with a palladium (II) catalyst in high yield. The effects of size of substitutents, molar ratio of monomer to catalyst, solvent polarity, reaction time, and temperature on the polymerization of exo‐norbornene dimethyl propionate were systematically investigated. The low molar ratio and temperature, as well as high polarity of solvent, and long reaction time, are favorable for the enhancement of the monomer conversion, especially, the solvent have an obvious effect on the catalyst activity. The resulting poly(cis‐norbornene‐exo‐2,3‐dimethyl carboxylates) (PNB‐dimethyl carboxylates) show good solubility in common organic solvent and high thermal stability up to 360 °C. The glass transition temperature was detected by DMA at 331, 324, and 318 °C for acetate, propionate, and butyrate, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3391–3399, 2007  相似文献   
108.
Ethylene–propylene copolymerization, using [(Ph)NC(R2)CHC(R1)O]2TiCl2 (R1 = CF3, Ph, or t‐Bu; R2 = CH3 or CF3) titanium complexes activated with modified methylaluminoxane as a cocatalyst, was investigated. High‐molecular‐weight ethylene–propylene copolymers with relatively narrow molecular weight distributions and a broad range of chemical compositions were obtained. Substituents R1 and R2 influenced the copolymerization behavior, including the copolymerization activity, methylene sequence distribution, molecular weight, and polydispersity. With small steric hindrance at R1 and R2, one complex (R1 = CF3; R2 = CH3) displayed high catalytic activity and produced copolymers with high propylene incorporation but low molecular weight. The microstructures of the copolymers were analyzed with 13C NMR to determine the methylene sequence distribution and number‐average sequence lengths of uninterrupted methylene carbons. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5846–5854, 2006  相似文献   
109.
The cycloterpolymerizations of single‐, twin‐, and triple‐tailed hydrophobes with hydrophilic monomer N,N‐diallyl‐N‐carboethoxymethylammonium chloride and sulfur dioxide afforded a series of cationic polyelectrolytes (CPEs) in excellent yields. These CPEs, upon the acidic hydrolysis of the pendent ester groups, gave the corresponding pH‐responsive cationic acid salts, which, upon a treatment with sodium hydroxide, were converted to polybetaines (PBs), anionic polyelectrolytes (APEs), and PB/APE polymers containing various proportions of zwitterionic (PB) and anionic fractions (APE) in the polymer chain. At a shear rate of 0.36 s−1 at 30 °C, salt‐free water solutions of the CPEs (2 g/dL) containing 8, 4, and 2.67 mol % of the single‐, twin‐, and triple‐tailed hydrophobes (all having 8 mol % octyloxy tails) had apparent viscosity values of 70, 2800, and 396,000 cps, respectively. The PB/APE polymer with a ratio of 33:67 for the zwitterionic and anionic fractions in the polymer chain gave the highest viscosity value. The superior viscosity behavior of the polymers containing the triple‐tailed hydrophobe was attributed to the blocky nature of the comonomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5480–5494, 2006  相似文献   
110.
Five novel fluorene‐containing polymers, poly[(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA1 ), poly[(1‐pentyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene) ( PFA2 ), poly[1‐decyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA3 ), poly[1‐phenyl‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA4 ), and poly[1‐(3,4‐difluorophenyl)‐2‐(9,9‐dimethylfluoren‐2‐yl)acetylene] ( PFA5 ) were synthesized by the polymerization of the corresponding fluorene‐substituted acetylenic monomers ( M1–M5), using WCl6, MoCl5, and TaCl5 as catalysts and n‐Bu4Sn as a cocatalyst. The synthesized polymers were thermally stable and readily soluble in common organic solvents. The degradation temperatures for a 5% weight loss of the polymers were ∼352–503 °C under nitrogen. PFA1–PFA5 show emission peaks from 402 to 590 nm. Besides, their electroluminescent properties were studied in heterostructure light‐emitting diodes (LEDs), using PFA2–PFA5 as an emitting layer. The PFA5 device revealed an orange‐red emission peak at 602 nm with a maximum luminescence of 923 cd/m2 at 8 V. A device with the ITO/PEDOT/ a mixture of PFA2 (98 wt %) and PFA5 (2 wt %)/Ca/Al showed near white emission. Its maximum luminance and current efficiency are 450 cd/m2 at 15 V and 1.3 cd/A, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 519–531, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号