首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3073篇
  免费   560篇
  国内免费   329篇
化学   2235篇
晶体学   40篇
力学   196篇
综合类   19篇
数学   306篇
物理学   1166篇
  2024年   13篇
  2023年   96篇
  2022年   109篇
  2021年   146篇
  2020年   173篇
  2019年   145篇
  2018年   142篇
  2017年   90篇
  2016年   185篇
  2015年   149篇
  2014年   197篇
  2013年   208篇
  2012年   294篇
  2011年   320篇
  2010年   186篇
  2009年   216篇
  2008年   208篇
  2007年   159篇
  2006年   143篇
  2005年   115篇
  2004年   93篇
  2003年   74篇
  2002年   71篇
  2001年   56篇
  2000年   51篇
  1999年   55篇
  1998年   41篇
  1997年   32篇
  1996年   49篇
  1995年   23篇
  1994年   30篇
  1993年   15篇
  1992年   16篇
  1991年   16篇
  1990年   12篇
  1989年   10篇
  1988年   8篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1974年   1篇
  1957年   3篇
排序方式: 共有3962条查询结果,搜索用时 15 毫秒
111.
112.
Dysregulated microRNA (miRNA) expression has a critical role in tumor development and metastasis. However, the mechanism by which miRNAs control melanoma metastasis is unknown. Here, we report reduced miR-98 expression in melanoma tissues with increasing tumor stage as well as metastasis; its expression is also negatively associated with melanoma patient survival. Furthermore, we demonstrate that miR-98 inhibits melanoma cell migration in vitro as well as metastatic tumor size in vivo. We also found that IL-6 is a target gene of miR-98, and IL-6 represses miR-98 levels via the Stat3-NF-κB-lin28B pathway. In an in vivo melanoma model, we demonstrate that miR-98 reduces melanoma metastasis and increases survival in part by reducing IL-6 levels; it also decreases Stat3 and p65 phosphorylation as well as lin28B mRNA levels. These results suggest that miR-98 inhibits melanoma metastasis in part through a novel miR-98-IL-6-negative feedback loop.  相似文献   
113.
Crude oils, which are complex mixtures of hydrocarbons, can be characterized by nuclear magnetic resonace diffusion and relaxation methods to yield physical properties and chemical compositions. In particular, the field dependence, or dispersion, of T1 relaxation can be used to investigate the presence and dynamics of asphaltenes, the large molecules primarily responsible for the high viscosity in heavy crudes. However, the T2 relaxation dispersion of crude oils, which provides additional insight when measured alongside T1, has yet to be investigated systematically. Here we present the field dependence of T1T2 correlations of several crude oils with disparate densities. While asphaltene and resin‐containing crude oils exhibit significant T1 dispersion, minimal T2 dispersion is seen in all oils. This contrasting behavior between T1 and T2 cannot result from random molecular motions, and thus, we attribute our dispersion results to highly correlated molecular dynamics in asphaltene‐containing crude oils.  相似文献   
114.
聚N-烷基丙烯酰胺因表现出温度敏感的特殊性能而成为高分子领域的研究热点,具有非常好的应用潜力。本文评述了线性和聚凝胶化N-烷基丙烯酰胺温敏聚合物的合成研究进展,分别介绍了水溶液自由基聚合合成线性N-烷基丙烯酰胺温敏聚合物的研究进展和化学交联、物理交联、辐射交联聚合凝胶化N-烷基丙烯酰胺温敏聚合物的合成研究进展,并对线性温敏聚合物和凝胶化文敏聚合物合成方法优缺点、单体选择、应用范围进行了讨论。  相似文献   
115.
A series of platinum(II) complexes of reduced amino acid esters Schiff bases were synthesized as potential anticancer agents and characterized by 1H NMR, EA, IR, and molar conductivity. These compounds were tested for their DNA interaction with salmon sperm DNA by ultraviolet spectrum and CD spectrum, and their in vitro anticancer activities have been validated against HL-60, KB, BGC-823, and Bel-7402 cell lines by MTT assay. The cytotoxicity of complexes 5d and 5f are better than cisplatin against Bel-7402 cell lines, and show a close cytotoxic effect against HL-60 cell line.  相似文献   
116.
Rechargeable aqueous zinc batteries (RAZB) have been re-evaluated because of the superiority in addressing safety and cost concerns. Nonetheless, the limited lifespan arising from dendritic electrodeposition of metallic Zn hinders their further development. Herein, a metal–organic framework (MOF) was constructed as front surface layer to maintain a super-saturated electrolyte layer on the Zn anode. Raman spectroscopy indicated that the highly coordinated ion complexes migrating through the MOF channels were different from the solvation structure in bulk electrolyte. Benefiting from the unique super-saturated front surface, symmetric Zn cells survived up to 3000 hours at 0.5 mA cm−2, near 55-times that of bare Zn anodes. Moreover, aqueous MnO2–Zn batteries delivered a reversible capacity of 180.3 mAh g−1 and maintained a high capacity retention of 88.9 % after 600 cycles with MnO2 mass loading up to 4.2 mg cm−2.  相似文献   
117.
Biological ion channels and ion pumps with sub-nanometer sizes modulate ion transport in response to external stimuli. Realizing such functions with sub-nanometer solid-state nanopores has been an important topic with wide practical applications. Herein, we demonstrate a biomimetic photoresponsive ion channel and photodriven ion pump using a porphyrin-based metal–organic framework membrane with pore sizes comparable to hydrated ions. We show that the molecular-size pores enable precise and robust optoelectronic ion transport modulation in a broad range of concentrations, unparalleled with conventional solid-state nanopores. Upon decoration with platinum nanoparticles to form a Schottky barrier photodiode, photovoltage across the membrane is generated with “uphill” ion transport from low concentration to high concentration. These results may spark applications in energy conversion, ion sieving, and artificial photosynthesis.  相似文献   
118.
The development of noble-metal-free heterogeneous catalysts is promising for selective oxidation of aromatic alcohols; however, the relatively low conversion of non-noble metal catalysts under solvent-free atmospheric conditions hinders their industrial application. Now, a holey lamellar high entropy oxide (HEO) Co0.2Ni0.2Cu0.2Mg0.2Zn0.2O material with mesoporous structure is prepared by an anchoring and merging process. The HEO has ultra-high catalytic activity for the solvent-free aerobic oxidation of benzyl alcohol. Up to 98 % conversion can be achieved in only 2 h, to our knowledge, the highest conversion of benzyl alcohol by oxidation to date. By regulating the catalytic reaction parameters, benzoic acid or benzaldehyde can be selectively optimized as the main product. Analytical characterizations and calculations provide a deeper insight into the catalysis mechanism, revealing abundant oxygen vacancies and holey lamellar framework contribute to the ultra-high catalytic activity.  相似文献   
119.
A method is developed to fabricate tumor microenvironment (TME) stimuli-responsive nanoplatform for fluorescence (FL) imaging and synergistic cancer therapy via assembling photosensitizer (chlorine e6, Ce6) modified carbon dots (CDs-Ce6) and Cu2+. The as-obtained nanoassemblies (named Cu/CC nanoparticles, NPs) exhibit quenched FL and photosensitization due to the aggregation of CDs-Ce6. Their FL imaging and photodynamic therapy (PDT) functions are recovered efficiently once they entering tumor sites by the stimulation of TME. Introducing of Cu2+ not only provides extra chemodynamic therapy (CDT) function through reaction with hydrogen peroxide (H2O2), but also depletes GSH in tumors by a redox reaction, thus amplifying the intracellular oxidative stress and enhancing the efficacy of reactive oxygen species (ROS) based therapy. Cu/CC NPs can act as a FL imaging guided trimodal synergistic cancer treatment agent by photothermal therapy (PTT), PDT, and thermally amplified CDT.  相似文献   
120.
The abundance of bacterial effectors have inspired us to explore their potential in rewiring malignant cell signaling. Their incapability for entering cells, however, hinders such application. Herein we developed a cationic lipid-based high throughput library screening platform for effective intracellular delivery of bacterial effectors. As the misregulated MAPK signaling is a hallmark of many types of cancer, we turned to the Shigella effector OspF which irreversibly inactivates ERK, the terminal component of MAPK cascade. We created a function-based screening assay to obtain AMPA-O16B lipid nanoparticles for effective OspF intracellular delivery, which inhibited the malignant MAPK signaling and tumor growth in vitro and in vivo. Furthermore, the optimized lipid nanoparticle formulation can deliver OspF to modulate the immunosuppressive responses in macrophages. Our work is a general strategy to explore the therapeutic potentials of naturally evolved bacterial effectors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号