Recent research revealed that tissue spray mass spectrometry enables rapid molecular profiling of biological tissues, which is of great importance for the search of disease biomarkers as well as for online surgery control. However, the payback for the high speed of analysis in tissue spray analysis is the generally lower chemical sensitivity compared with the traditional approach based on the offline chemical extraction and electrospray ionization mass spectrometry detection. In this study, high resolution mass spectrometry analysis of endometrium tissues of different localizations obtained using direct tissue spray mass spectrometry in positive ion mode is compared with the results of electrospray ionization analysis of lipid extracts. Identified features in both cases belong to three lipid classes: phosphatidylcholines, phosphoethanolamines, and sphingomyelins. Lipids coverage is validated by hydrophilic interaction liquid chromatography with mass spectrometry of lipid extracts. Multivariate analysis of data from both methods reveals satisfactory differentiation of eutopic and ectopic endometrium tissues. Overall, our results indicate that the chemical information provided by tissue spray ionization is sufficient to allow differentiation of endometrial tissues by localization with similar reliability but higher speed than in the traditional approach relying on offline extraction.
In this study, a series of unsymmetrically 2-morpholinoethyl-substituted benzimidazolium salts and their Ag(I)NHC complexes were synthesized. The 1,3-dialkylbenzimidazolium salts (1a–d) were synthesized in dimethylformamide at 80 °C temperature from the N-(2-morpholinoethyl)benzimidazole and alkyl halides. The Ag(I)NHC complexes (2a–d) were synthesized in dichloromethane at room temperature from the benzimidazolium salts and Ag2O. All compounds were characterized by spectroscopic techniques (NMR and FT-IR) and elemental analyses. Also, the salt 1c and complex 2c were characterized by single-crystal X-ray crystallography. Anticancer activities of 2-morpholinoethyl-substituted benzimidazolium salts and Ag(I)NHC complexes were investigated against the MCF-7 breast cancer cell line, and the IC30 and IC50 values of these compounds were found to be in the range of 241–490 and 6–14 µM, respectively. 相似文献
Schiff bases are stable imines containing C=N, where N is bonded to an alkyl or aryl group, but not with hydrogen and are prepared by condensation of aliphatic or aromatic primary amine with carbonyl compounds. They have the general formula R1R2C?=?NR3, where R3?≠?H. The presence of the basic donor N atom and the stability of the imine function render Schiff bases as the most favored ligands that have the ability to stabilize metal ions in different oxidation states. The chelating environment in a Schiff base profoundly influences the electron distribution in the coordination sphere of metal in a complex and thereby regulates the property of the compounds in a big way. The structural diversity in some of the metal complexes with multidentate Schiff base ligands has triggered a wide range of applications of this class of compounds in sensors, catalysis, biology, medicines, and photonics. This review compiles the synthesis and biological activities (antimicrobial, antioxidant, anticancer, antitubercular, DNA interaction studies) of benzaldehyde-based Schiff bases and their metal complexes. 相似文献
TNF-α is a crucial cytokine in the process of inflammatory diseases. The adverse effect of TNF-α is mostly mediated by interaction of TNF-α with TNF-α receptor type I (TNFR1); therefore, discovery of molecules which can bind to TNFR1 preventing TNF-α-receptor complex formation would be of great interest. In the current study, using GRID/GOLPE program, a 3D-QSAR study was conducted on a series of synthetic TNFR1 binders, which resulted in a 3D-QSAR model with appropriate power of predictivity in internal (r2?=?0.94 and q2LOO?=?0.74) and external (r2?=?0.66 and SDEP?=?0.42) validations. The structural features of TNFR1 inhibitors essential for exerting activity were explored by analyzing the contour maps of the 3D-QSAR model showing that steric interactions and hydrogen bonds are responsible for exerting TNFR1 inhibitory activity. To propose potential chemical entities for TNFR1 inhibition, PubChem database was searched and the selected compounds were virtually tested for anti-TNFR1 activity using the generated model, resulting in two potential anti-TNFR1 compounds. Finally, the possible interactions of the compounds with TNFR1 were investigated using docking studies. The findings in the current work can pave the way for designing more potent anti-TNFR1 inhibitors. 相似文献
In this study, a three-component nanocomposite consisted of graphene, manganese ferrite and phosphotungstic acid (PTA) has been prepared. This composite, which is designated as Graphene/MnFe2O4@PTA, was synthesized through anchoring of PTA–imidazolium ionic liquid on magnetic graphene sheets. The structural and magnetic properties of the fabricated nanocomposite were studied by employing FT-IR, SEM, EDX, TEM, ICP, VSM, P-XRD and BET techniques. The synthesized magnetic nanocomposite was examined as an efficient and recyclable acidic catalyst for Mannich reaction under solvent-free conditions. The products of this reaction, which are an important class of potentially bioactive compounds, were obtained with good to excellent yields, and the catalyst could be readily recycled without any significant loss of its activity. 相似文献
A highly sensitive sensor based on Ni nanoparticles/poly (1,2-diaminoanthraquinone) modified electrode was fabricated at glassy carbon (GC) electrode (Ni/PDAAQ@GC ME) using cyclic voltammetry technique. The incorporation of nickel (II) ions nanoparticles (Ni NPs) followed by anodic polarization process was achieved. Surface morphologies of both PDAAQ@GC ME and Ni/PDAAQ@GC MEs were studied by scanning electron microscope. Ni/PDAAQ@GC ME was tested for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) by square wave voltammetry technique. The ME showed excellent electrocatalytic activity toward electrooxidation of these biomolecules in their single, binary and ternary systems in alkaline 0.1 M NaOH solutions. Experiment revealed that the low detection limits (LOD) for AA, DA and UA were 0.11, 0.072 and 1.2 µM in single system, respectively, and 0.069, 0.29 and 0.12 µM in ternary system, respectively. 相似文献
A novel inorganic–organic nanohybrid material SBA-15@triazine/H5PW10V2O40 (SBA-15@ADMPT/H5PW10V2O40) was prepared and used as an efficient, eco-friendly, and highly recyclable catalyst for the one-pot multicomponent synthesis of multisubstituted pyridines from the reaction of aldehydes, cyclic ketones, malononitrile, and ammonium acetate with good to excellent yields (77–97%). The nanohybrid catalyst was prepared by the chemical anchoring of Keggin heteropolyacid H5PW10V2O40 onto the surface of SBA-15 mesoporous silica modified with 2-APTS -4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazine (ADMPT) linker. Standard characterization data such as FT-IR, XRD, SEM, TEM, BET, EDX, and DTA-TGA spectroscopy confirmed that the heteropolyacid H5PW10V2O40 is well dispersed on the surface of the solid support and its structure is preserved after immobilization on the SBA-15 mesoporous silica modified with ADMPT. Furthermore, the nanocatalyst can be recovered easily and reused five times without considerable loss of catalytic activity. In general, these advantages highlight this protocol as an attractive and useful methodology, among the other methods reported in the literature, for the eco-friendly and rapid synthesis of biologically active multisubstituted pyridines. 相似文献
A three-component process for the one-pot synthesis of 6-amino-4-aryl-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazoles by the reaction of aldehydes, 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one, and malononitrile in the presence of FSM-16-SO3H as an efficient mesoporous catalyst. The FSM-16-SO3H was prepared and characterized by SEM, XRD, BET, and FT-IR techniques. The advantages of the presented method are high yields, short reaction times, easy purification of products, easy work-up, and reusability of the catalyst. 相似文献
We describe Monte Carlo simulations of resonance energy transfer (RET) experiments for immobile donor (D) and acceptor (A) dyes confined to planar, cylindrical, and spherical restricted geometries. We compare values of the quantum efficiency (PhiET) evaluated through consideration of individual donor-acceptor pairs, with values calculated assuming a pre-averaged value of the orientation parameter /kappa/2 = 0.476 appropriate for infinite three dimensional (3D) space. For dyes confined to restricted geometries where the length scale of the confining dimension is less than or equal to the F?rster radius R0, the coupling of the orientation parameter and the donor-acceptor distance becomes noticeable. Values of Phi(ET) obtained by proper consideration of the orientation parameter are smaller than those calculated using /kappa/2 = 0.476. We use this Monte Carlo method to reanalyze the fluoresce decay measured from dye-labeled poly(isoprene-b-methyl methacrylate) diblock copolymer with lamellar structure,(1) from which the interface thickness for PI-PMMA lamella can be retrieved. We found the retrieved interface thickness is sensitive to the choice of dipole orientation. If all dipoles in the confined polymer interface have a random orientation, the value of interface thickness was found to be 0.9 +/- 0.2 nm through consideration of individual dipole orientations. Assumption of /kappa/2 = 0.476 in the FRET calculations leads to a larger value of interface thickness (1.3 +/- 0.2 nm) due to the neglect of the coupling between dipole orientation and D-A distance for the dyes confined to lamellar interfaces. 相似文献
Hydrophobically associating copolymers of acrylamide (AM) with a small amount of 4-(omega-propenoyloxyethoxy) benzoic acid (PEBA, <2.5%) were synthesized by template copolymerization in the presence of poly(allylammonium chloride) (PAAC) as a template in an aqueous medium. These template copolymers exhibited remarkable thickening properties due to the effective hydrophobic association, which were similar to those copolymers with a multiblock structure obtained by the micellar process. The pH of the reaction medium and the molecular weight of the template strongly influenced the thickening properties of the products. In the experimental range, the higher the PEBA content, the larger the thickening capacity of these hydrophobic copolymers. The aggregate behaviors of these copolymers were studied by fluorescence, transmission electron microscopy (TEM), and light scattering techniques. The apparent critical interpolymer aggregate concentration (cac) of the copolymer solution was about 0.5 g/dL. As the concentration of the copolymer became higher than the cac, the aggregates changed their morphology from small hollow spheres to big flower-shaped aggregates. All the above results indicated that the template copolymerization gave access to a very simple and powerful means for the preparation of hydrophobically associating copolymers and other functional polymer materials. 相似文献