首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   9篇
数学   2篇
物理学   1篇
  2020年   2篇
  2017年   1篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
排序方式: 共有12条查询结果,搜索用时 0 毫秒
11.
Influence of two different fly ashes on the hydration of portland cements   总被引:1,自引:0,他引:1  
Fly ashes from the combustion of coal thermal power stations are commonly incorporated into portland cements and/or concretes and mortars. The chemical and morphological composition of fly ashes, together with their particle size, make them suitable as pozzolanic(non-calcic) or pozzolanic/hydraulic(highly calcic) additions to manufacture such building materials. This work focuses on the incorporation of two different fly ashes (non-calcic but of very different Fe2O3(%) contents, fineness and morphology) to two ordinary portland cements (of very different mineralogical composition as well), to determine the effects those have and the interactions they produce in the hydration reactions of portland cement. The main techniques employed for this study have been: conduction calorimetry and Frattini test; secondary techniques applied have also been: determination of setting times and analysis by X-ray diffraction and SEM. Analysis of the results obtained permitted to find different effects of fly ash addition on the hydration reactions of portland cements. Thus, dilution and stimulation effects augment with the increased fly ash percentage. Delay and acceleration of the reactions depend mainly on the type of portland cement and are accentuated with increased fly ash contents. Their behaviour as concerns heat dissipation mainly, depends on the type of fly ash used and is more pronounced with increased cement replacement. On the other hand, the pozzolanic activity of these fly ashes has been revealed at 7 and 28 days, but not at 2 days. Finally, pozzolanic cements can be manufactured using different portland cements and/or types of fly ashes, in the appropriate proportions and compatible qualities, depending on the effect(s) one wish to enhance at a specific age, which is according to previous general conclusions drew out of sulphate attack and chloride attack researches. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
12.
The use of active mineral additions is an important alternative in concrete design. Such use is not always appropriate, however, because the heat released during hydration reactions may on occasion affect the quality of the resulting concrete and, ultimately, structural durability. The effect of adding up to 20% silica fume on two ordinary Portland cements with very different mineralogical compositions is analyzed in the present paper. Excess gypsum was added in amounts such that its percentage by mass of SO3 came to 7.0%. The chief techniques used in this study were heat conduction calorimetry and the Frattini test, supplemented with the determination of setting times and X-ray diffraction. The results obtained showed that replacing up to 20% of Portland cement with silica fume affected the rheology of the cement paste, measured in terms of water demand for normal consistency and setting times; the magnitude and direction of these effects depended on the mineralogical composition of the clinker. Hydration reactions were also observed be stimulated by silica fume, both directly and indirectly – the latter as a result of the early and very substantial pozzolanic activity of the addition and the former because of its morphology (tiny spheres) and large BET specific surface. This translated into such a significant rise in the amounts of total heat of hydration released per gram of Portland cement at early ages, that silica fume may be regarded in some cases to cause a synergistic calorific effect with the concomitant risk of hairline cracking. The addition of excess gypsum, in turn, while prompting and attenuation of the calorimetric pattern of the resulting pastes in all cases, caused the Portland cement to generate greater heat of hydration per gram, particularly in the case of Portland cement with a high C3A content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号