首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78197篇
  免费   340篇
  国内免费   381篇
化学   24178篇
晶体学   787篇
力学   6749篇
数学   32123篇
物理学   15081篇
  2018年   10436篇
  2017年   10265篇
  2016年   6065篇
  2015年   854篇
  2014年   311篇
  2013年   338篇
  2012年   3796篇
  2011年   10514篇
  2010年   5638篇
  2009年   6055篇
  2008年   6587篇
  2007年   8764篇
  2006年   236篇
  2005年   1310篇
  2004年   1547篇
  2003年   1979篇
  2002年   1018篇
  2001年   246篇
  2000年   291篇
  1999年   154篇
  1998年   192篇
  1997年   146篇
  1996年   201篇
  1995年   117篇
  1994年   79篇
  1993年   96篇
  1992年   56篇
  1991年   65篇
  1990年   50篇
  1989年   59篇
  1988年   60篇
  1987年   57篇
  1986年   59篇
  1985年   48篇
  1984年   53篇
  1983年   36篇
  1982年   45篇
  1981年   42篇
  1980年   50篇
  1979年   47篇
  1978年   35篇
  1973年   25篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1910年   24篇
  1909年   41篇
  1908年   40篇
  1907年   32篇
  1904年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
Myocardial infarction results from the rupture of an atherosclerotic plaque, which occurs in response to both mechanical stress and inflammatory processes. In order experimentally observe flow into atherosclerotic coronary artery morphologies, a novel technique for molding realistic compliant phantom featuring injection-molded inclusions and multiple layers has been developed. This transparent phantom allows for particle image velocimetry (PIV) flow analysis and can supply experimental data to validate computational fluid dynamics algorithms and hypothesis.  相似文献   
932.

Background

The morphological development of neurons is a very complex process involving both genetic and environmental components. Mathematical modelling and numerical simulation are valuable tools in helping us unravel particular aspects of how individual neurons grow their characteristic morphologies and eventually form appropriate networks with each other.

Methods

A variety of mathematical models that consider (1) neurite initiation (2) neurite elongation (3) axon pathfinding, and (4) neurite branching and dendritic shape formation are reviewed. The different mathematical techniques employed are also described.

Results

Some comparison of modelling results with experimental data is made. A critique of different modelling techniques is given, leading to a proposal for a unified modelling environment for models of neuronal development.

Conclusion

A unified mathematical and numerical simulation framework should lead to an expansion of work on models of neuronal development, as has occurred with compartmental models of neuronal electrical activity.
  相似文献   
933.
934.
We study the massless field on \({D_n = D \cap \tfrac{1}{n} \mathbf{Z}^2}\), where \({D \subseteq \mathbf{R}^2}\) is a bounded domain with smooth boundary, with Hamiltonian \({\mathcal {H}(h) = \sum_{x \sim y} \mathcal {V}(h(x) - h(y))}\). The interaction \({\mathcal {V}}\) is assumed to be symmetric and uniformly convex. This is a general model for a (2 + 1)-dimensional effective interface where h represents the height. We take our boundary conditions to be a continuous perturbation of a macroscopic tilt: h(x) = n x · u + f(x) for \({x \in \partial D_n,\,u \in \mathbf{R}^2}\), and f : R 2R continuous. We prove that the fluctuations of linear functionals of h(x) about the tilt converge in the limit to a Gaussian free field on D, the standard Gaussian with respect to the weighted Dirichlet inner product \({(f,g)_\nabla^\beta = \int_D \sum_i \beta_i \partial_i f_i \partial_i g_i}\) for some explicit β = β(u). In a subsequent article, we will employ the tools developed here to resolve a conjecture of Sheffield that the zero contour lines of h are asymptotically described by SLE(4), a conformally invariant random curve.  相似文献   
935.
A quantum Navier–Stokes system for the particle, momentum, and energy densities is formally derived from the Wigner–Fokker–Planck equation using a moment method. The viscosity term depends on the particle density with a shear viscosity coefficient which equals the quantum diffusion coefficient of the Fokker–Planck collision operator. The main idea of the derivation is the use of a so-called osmotic momentum operator, which is the sum of the phase-space momentum and the gradient operator. In this way, a Chapman–Enskog expansion of the Wigner function, which typically leads to viscous approximations, is avoided. Moreover, we show that the osmotic momentum emerges from local gauge theory.  相似文献   
936.
Uniform Cu2O hollow spheres fabricated by single-crystalline particles (smaller than 20 nm) are facile synthesized in ethylene glycol (EG) solution by a simple solvothermal route without using pre-fabricated templates and reductive agents. EG in this protocol is not only used as a solvent, complexing agent, and reducing agent, but also served as a structure-directing agent for the formation of hollow structure. By control of reaction conditions, such as reaction time, temperature, and the anions, the morphology and structure of the hollow spheres can be tuned. A coordination adsorption and oriented attachment and Ostwald ripening mechanism is proposed for explaining the formation process of hollow Cu2O spheres in EG solution; and importantly, the hollow Cu2O spheres exhibit an excellent property for the electro-catalytic oxidization of ascorbic acid in acetic acid buffer solution. Moreover, the hollow spherical Cu2O particles could be potentially applied in catalysis, sensor, and as model for fundamental research.  相似文献   
937.
This paper starts with a self-contained discussion of the so-called Akulov–Volkov action SAV\mathcal{S}_{\mathrm{AV}}, which is traditionally taken to be the leading-order action of the Goldstino field. Explicit expressions for SAV\mathcal{S}_{\mathrm{AV}} and its chiral version SAVch\mathcal{S}_{\mathrm{AV}}^{\mathrm{ch}} are presented. We then turn to the issue on how these actions are related to the leading-order action SNL\mathcal{S}_{\mathrm{NL}} proposed in the newly proposed constrained superfield formalism. We show that SNL\mathcal{S}_{\mathrm{NL}} may yield SAV/SAVch\mathcal{S}_{\mathrm {AV}}/\mathcal{S}_{\mathrm{AV}}^{\mathrm{ch}} or a totally different action SKS\mathcal{S}_{\mathrm{KS}}, depending on how the auxiliary field in the former is integrated out. However, SKS\mathcal{S}_{\mathrm{KS}} and SAV/SAVch\mathcal{S}_{\mathrm {AV}}/\mathcal{S}_{\mathrm{AV}}^{\mathrm{ch}} always yield the same S-matrix elements, as one would have expected from general considerations in quantum field theory.  相似文献   
938.
We derive symplectically invariant uncertainty relations for a set of canonically conjugated variables. The uncertainty relations obtained are multimode analogs of the Robertson–Schrödinger inequalities. Our uncertainty relations are equivalent to the necessary and sufficient conditions for a matrix to be a correlation matrix of some quantum state, obtained by R. Simon and coauthors. The advantage of our inequalities, compared to that suggested by Simon, consists in its simplicity and more obvious symplectic invariance. We derive our inequalities for the case of a two-mode system in explicit form. Particular cases of small and large degrees of correlation between the first and second modes are analyzed in detail.  相似文献   
939.
The physical behavior of a fluid in contact with solid layers is still not fully understood. The present work focuses on the study and understanding of thermodynamic and structural properties of gold–water nanolayer mixtures using molecular dynamics simulations. Two different systems are considered, where approximately 1,700 water molecules are confined between gold nanolayers with separations of 7.4 and 6.2 nm, respectively. Novelties of the present work are in the use of accurate force fields for modeling the inter- and intra-molecular interactions of the components, and providing comprehensive thermodynamic properties of the mixtures. The results are validated by examination of the pure fluid and pure solid properties. Results indicate that the thermodynamics of the system does not behave as an ideal mixture. The structure of the pure fluid is also analyzed and compared against the structure of the confined fluid in the mixture. Anisotropicity is observed in the fluid structure close to the surface of the nanolayer. Higher ordering and higher flux are detected in the fluid molecules close to the fluid–solid interface. Unusual thermodynamic behavior, anisotropicity, liquid layering, and higher interfacial fluid flux could be just some of the factors leading to the enhanced energy transport observed in mixtures involving at least one nanoscale component, such as nanofluids.  相似文献   
940.
The Er3+ -Yb3+ codoped in Li2O content tungsten -tellurite (TWL) transparent glasses are synthesized and measured the absorption, Raman and upconversion luminescence (UPL) spectra. At room temperature intense green emission peak at 560 nm ( 4S3/24I15/2) and red emission peak at 670 nm ( 4F9/24I15/2) of Er3+ observed even at minimum 86 mW pumping power of infrared 980 nm excitation. For structure of the TWL glass, Raman spectrum result revealed that an important role of WO3 in the formation of glass network linkage with Li2O. Under this influence estimated lifetime of the 4I11/2 of Er3+ was 1.89 μs and due to lower phonon energy of the glass produce strong upconversion signal. The effect of Er2O3 concentration on emission intensity result indicated that green emission intensity initially increase in compare to red emission. Under the 980 nm pump power variation measured the relatively increases the red emission to the green emission intensity and analyze the possible upconversion mechanism and process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号