Let a graph G = (V, E) with vertex set V and edge set E be given. The classical graph version of the p-median problem asks for a subset
of cardinality p, so that the (weighted) sum of the minimum distances from X to all other vertices in V is minimized. We consider the semi-obnoxious case, where every vertex has either a positive or a negative weight. This gives rise to two different objective functions, namely the weighted sum of the minimum distances from X to the vertices in V\X and, differently, the sum over the minimum weighted distances from X to V\X. In this paper an Ant Colony algorithm with a tabu restriction is designed for both problems. Computational results show its superiority with respect to a previously investigated variable neighborhood search and a tabu search heuristic.This research has partially been supported by the Spezialforschungsbereich F 003 “Optimierung und Kontrolle”, Projektbereich Diskrete Optimierung. 相似文献
Let R be a commutative ring with identity. A proper submodule N of an R-module M will be called prime [resp. n-almost prime], if for r ∈ R and a ∈ M with ra ∈ N [resp. ra ∈ N \ (N: M)n?1N], either a ∈ N or r ∈ (N: M). In this note we will study the relations between prime, primary and n-almost prime submodules. Among other results it is proved that:
If N is an n-almost prime submodule of an R-module M, then N is prime or N = (N: M)N, in case M is finitely generated semisimple, or M is torsion-free with dim R = 1.
Every n-almost prime submodule of a torsion-free Noetherian module is primary.
Every n-almost prime submodule of a finitely generated torsion-free module over a Dedekind domain is prime.
There exists a finitely generated faithful R-module M such that every proper submodule of M is n-almost prime, if and only if R is Von Neumann regular or R is a local ring with the maximal ideal m such that m2 = 0.
If I is an n-almost prime ideal of R and F is a flat R-module with IF ≠ F, then IF is an n-almost prime submodule of F.
In a manufacturing environment, workforce flexibility can be achieved by cross-training and improved via job rotation. In firms with a flexible workforce, employees perform different tasks and functions in response to fluctuations in both product demands and labour resources. This paper presents a mathematical programming model that assigns workers to tasks, rotates workers between the tasks, and determines the training schedule. The objective is to minimize the total costs including training cost, flexibility cost, and productivity loss cost. A constructive-search heuristic is also developed to solve the proposed model. The algorithm provides good solutions in two phases: construction and improvement. At the construction phase, a solution is built using some problem-specific information. The quality of the solution is then enhanced by changing worker assignments at a particular time point during a planning horizon. Our computational results for a number of randomly generated test problems confirms the efficiently of the proposed method. 相似文献
A two-fluid model (TFM) of multiphase flows based on the kinetic theory and small frictional limit boundary condition of granular flow was used to study the behavior of dense to dilute gas–solid flows in vertical pneumatic conveyor. An axisymmetric 2-dimensional, vertical pipe with 5.6 m length and 0.01 m internal diameter was chosen as the computation domain, same to that used for experimentation in the literature. The chosen particles are spherical, of diameter 1.91 mm and density 2500 kg/m3. Turbulence interaction between the gas and particle phases was investigated by Simonin's and Ahmadi's models and their numerical results were validated for dilute to dense conveying of particles. Flow regimes transition and pressure drop were predicted. Voidage and velocity profiles of each phase were calculated in radial direction at different lengths of the conveying pipe. It was found that the voidage has a minimum, and gas and solid velocities have maximum values along the center line of the conveying pipe and pressure drop has a minimum value in transition from dense slugging to dilute stable flow regime. Slug length and pressure fluctuation reduction were predicted with increasing gas velocity, too. It is shown that solid phase turbulence plays a significant role in numerical prediction of hydrodynamics of conveyor and the capability of particles turbulence models depends on tuning parameters of slip-wall boundary condition. 相似文献
Input design has a dominant role in developing the dynamic model of an autonomous underwater vehicle (AUV) through system identification. Optimal input design is the process of generating informative inputs that can be used to provide a good-quality dynamic model of AUV. In this paper, amplitude-modulated pseudo-random binary signal (APRBS) inputs are optimally designed in order to estimate the hydrodynamic derivatives of an AUV’s nonlinear dynamic model. The input controls are designed so as to minimize uncertainty in estimating hydrodynamic derivatives. The employed approach can design multiple inputs and apply constraints on an AUV system’s inputs and outputs. The genetic algorithm is utilized to solve the constraint optimization problem. The presented algorithm is used for designing the input signals of Hydrolab300 AUV, and the estimation obtained by these inputs is compared with that of zigzag maneuver. According to the results, the designed APRBS inputs improve the uncertainties that exist in estimating hydrodynamic derivatives better than zigzag inputs. 相似文献
Most water in the world is as saline water in seas and oceans. Desalination technology is a promising method to solve the global water crisis. Recently, many attentions have been paid to the graphene-based membranes in water desalination due to their low production cost and high efficiency. In this paper, molecular dynamics simulations are employed to investigate the effect of functionalized graphene nanosheet (GNS) membranes on the performance of salt separation from seawater in terms of water permeability and salt rejection. For this purpose, the hydrogenated (–H) and fluorinated (–F) pores were created on the GNS membrane. Then, the functionalized graphene membrane was placed in the middle of the simulation box in an aqueous ionic solution containing Na+ and Cl? ions. The applied pressure (in the range of 10–100 MPa) was used as the driving force for transport of water molecules across the reverse osmosis (RO) graphene-based membrane in order to obtain the water permeability and salt rejection. Also, radial distribution functions (RDFs) of ion–water and water–water as well as the water density map around the membrane were obtained. The results indicated that the hydrophilic chemical functions such as fluorine (–F) can improve the water permeability at low pressures.
A sulfonic acid functionalized ionic liquid is used as a Brønsted acid catalyst for the one-pot, three-component synthesis of α-aminophosphonates from aldehydes and ketones at room temperature in water. This homogeneous catalytic procedure is simple and efficient and the catalyst can be reused at least six times without any noticeable decrease in catalytic activity. 相似文献
This paper deals with the numerical solution of classes of fractional convection–diffusion equations with variable coefficients. The fractional derivatives are described based on the Caputo sense. Our approach is based on the collocation techniques. The method consists of reducing the problem to the solution of linear algebraic equations by expanding the required approximate solution as the elements of shifted Legendre polynomials in time and the Sinc functions in space with unknown coefficients. The properties of Sinc functions and shifted Legendre polynomials are then utilized to evaluate the unknown coefficients. Several examples are given and the numerical results are shown to demonstrate the efficiency of the newly proposed method. 相似文献