全文获取类型
收费全文 | 2735篇 |
免费 | 129篇 |
国内免费 | 13篇 |
专业分类
化学 | 2083篇 |
晶体学 | 25篇 |
力学 | 56篇 |
数学 | 231篇 |
物理学 | 482篇 |
出版年
2024年 | 4篇 |
2023年 | 13篇 |
2022年 | 53篇 |
2021年 | 53篇 |
2020年 | 47篇 |
2019年 | 57篇 |
2018年 | 38篇 |
2017年 | 50篇 |
2016年 | 115篇 |
2015年 | 85篇 |
2014年 | 127篇 |
2013年 | 235篇 |
2012年 | 240篇 |
2011年 | 227篇 |
2010年 | 160篇 |
2009年 | 124篇 |
2008年 | 169篇 |
2007年 | 149篇 |
2006年 | 152篇 |
2005年 | 142篇 |
2004年 | 118篇 |
2003年 | 110篇 |
2002年 | 129篇 |
2001年 | 48篇 |
2000年 | 38篇 |
1999年 | 26篇 |
1998年 | 19篇 |
1997年 | 18篇 |
1996年 | 19篇 |
1995年 | 12篇 |
1994年 | 11篇 |
1993年 | 7篇 |
1992年 | 6篇 |
1991年 | 12篇 |
1990年 | 4篇 |
1989年 | 12篇 |
1987年 | 4篇 |
1986年 | 2篇 |
1985年 | 8篇 |
1984年 | 4篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1981年 | 6篇 |
1980年 | 2篇 |
1979年 | 5篇 |
1977年 | 2篇 |
1976年 | 4篇 |
1975年 | 2篇 |
1972年 | 2篇 |
1970年 | 1篇 |
排序方式: 共有2877条查询结果,搜索用时 31 毫秒
61.
Tae Hee Kim Jai Keun Kim Wooyoung Shim Sun Yong Kim Tae Jun Park Jae Yeon Jung 《Magnetic resonance imaging》2010
In vivo visualization of transplanted stem cells with noninvasive technique is essential for the monitoring of cell implantation, homing and differentiation. At present, superparamagnetic iron oxide (SPIO) is most commonly used for cell labeling. However, stem cells lack phagocytic capacity and transfection agent is required for sufficient internalization of SPIO for cellular imaging. However, the potential hazards of transfection agents are not fully investigated. Instead of SPIO, we used commercially available new tagging material, fluorescent magnetic nanoparticle (MNP) containing rhodamine B isothiocyanate within a silica shell (Biterials, Seoul, Korea). This tagging material does not require transfection agents for the cell labeling. In addition to that, the core of this MNP is composed of ferrite and the inner portion of silica shell contains fluorescent materials, therefore, it has both magnetic and optical features. This study was designed to track intrasplenically injected bone marrow mesenchymal stem cells (MSCs) labeled with fluorescent MNP in liver cirrhosis rat model with 3-T magnetic resonance equipment. We compared magnetic resonance imaging (MRI) of livers in rats which were injected with non-labeled stem cells or labeled stem cells with MNP or SPIO. We found that the respective liver-to-muscle contrast-to-noise ratios at 3 and 5 h after MNP or SPIO-labeled stem cell injection was significantly lower than that of pre-injection and non-labeled group. There was no significant difference between MNP-labeled group and SPIO-labeled group. We can effectively detect intrasplenically injected MNP-labeled MSCs in an experimental rat model of liver cirrhosis with 3-T MRI. 相似文献
62.
63.
A. N. Kornienko S. G. Pil’o V. M. Prokopenko V. S. Brovarets 《Russian Journal of General Chemistry》2014,84(6):1186-1189
Chlorination of 2-aryl-5-benzylsulfanyl-1,3-oxazole-4-carbonitrile in aqueous acetic acid at 50–60°C afforded new 2-aryl-5-chloro-1,3-oxazole-4-carboxamides. The reactivity of the chlorine atom with respect to the N-, O-, and S-nucleophiles was investigated. 相似文献
64.
Heung Jae Lee Dong Seok Kim Min Chul Suh Sang Chul Shim 《Journal of polymer science. Part A, Polymer chemistry》1996,34(16):3255-3261
2,4-Hexadiyn-1,6-diol (HDO) was polymerized on glass and silicon plates by chemical vapor deposition without transition metal catalysis to form homogeneous thin films. Structural properties of the films were investigated by FT-IR, UV-visible, Raman, x-ray diffraction, and XPS spectroscopic analyses. The structure of CVD-polymerized HDO (CVD-PHDO) films was different from that of metathesis polymerized HDO (metathesis-PHDO), showing a polyacene-based structure but no polyene structure with acetylenic side groups. © 1996 John Wiley & Sons, Inc. 相似文献
65.
Eun Kee Cho Phong K. Quach Yunfei Zhang Jae Hun Sim Tristan H. Lambert 《Chemical science》2022,13(8):2418
The use of hydrazine-catalyzed ring-closing carbonyl–olefin metathesis (RCCOM) to synthesize polycyclic heteroaromatic (PHA) compounds is described. In particular, substrates bearing Lewis basic functionalities such as pyridine rings and amines, which strongly inhibit acid catalyzed RCCOM reactions, are shown to be compatible with this reaction. Using 5 mol% catalyst loadings, a variety of PHA structures can be synthesized from biaryl alkenyl aldehydes, which themselves are readily prepared by cross-coupling.Hydrazine catalysis enables the ring-closing carbonyl–olefin metathesis (RCCOM) to form polycyclic heteroaromatics, especially those with basic functionality.Polycyclic heteroaromatic (PHA) structures comprise the core framework of many valuable compounds with a diverse range of applications (Fig. 1A).1 For example, polycyclic azines (e.g. quinolines) are embedded in many alkaloid natural products, including diplamine2 and eupolauramine3 to name just a few. These types of structures are also of interest for their biological activity, such as with the inhibitor of the Src-SH3 protein–protein interaction shown in Fig. 1A.4 Many nitrogenous PHAs are also useful as ligands for transition metal catalysis, as exemplified by the widely used ligand 1,10-phenanthroline.5 Meanwhile, chalcogenoarenes6 such as dinaphthofuran7 and benzodithiophene8 have attracted high interest for both their medicinal properties9 and especially for their potential use as organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), and organic field-effect transistors (OFETs).10 These and numerous other examples have inspired the development of a wide variety of strategies to construct PHAs.1,11–14 Although these approaches are as varied as the structures they target, the wide range of molecular configurations within PHA chemical space and the challenges inherent in exerting control over heteroatom position and global structure make novel syntheses of these structures a topic of continuing interest.Open in a separate windowFig. 1(A) Examples of PHAs. (B) RCCOM strategy for PHA synthesis. (C) Lewis base inhibition for Lewis acid vs. hydrazine catalyzed RCCOM. (D) Hydrazine-catalyzed RCCOM for PHA synthesis.One potentially advantageous strategy for PHA synthesis is the use of ring-closing carbonyl–olefin metathesis15 (RCCOM) to forge one of the PHA rings, starting from a suitably disposed alkenyl aldehyde precursor 2 that can be easily assembled by cross-coupling (Fig. 1B). In related work, the application of RCCOM to form polycyclic aromatic hydrocarbons (PAHs) was reported by Schindler in 2017.16 In this case, 5 mol% FeCl3 catalyzed the metathesis of substrates to form phenanthrenes and related compounds in high yields at room temperature. This method was highly attractive for its efficiency, its use of an earth-abundant metal catalyst, and the production of benign acetone as the only by-product. Nevertheless, one obvious drawback to the use of Lewis acid activation is that the presence of any functionality that is significantly more Lewis basic than the carbonyl group can be expected to strongly inhibit these reactions (Fig. 1C). Such a limitation thus renders this method incompatible with a wide swath of complex molecules, especially PHAs comprised of azine rings. This logic argues for a mechanistically orthogonal RCCOM approach that allows for the synthesis of PHA products with a broader range of ring systems and functional groups.We have developed an alternative approach to catalytic carbonyl–olefin metathesis that makes use of the condensation of 1,2-dialkylhydrazines 5 with aldehydes to form hydrazonium ions 6 as the key catalyst–substrate association step.17–19 This interaction has a much broader chemoorthogonality profile than Lewis acid–base interactions and should thus be much less prone to substrate inhibition than acid-catalyzed approaches. In this Communication, we demonstrate that hydrazine-catalyzed RCCOM enables the rapid assembly of PHAs bearing basic functionality (Fig. 1D).For our optimization studies, we chose biaryl pyridine aldehyde 7 as the substrate (20 salt 11 was also productive (entry 2), albeit somewhat less so. Notably, iron(iii) chloride generated no conversion at either ambient or elevated temperatures (entries 3 and 4). Trifluoroacetic acid (TFA) was similarly ineffective (entry 5). Meanwhile, a screen of various solvents revealed that, while the transformation could occur in a range of media (entries 6–9), THF was optimal. Finally, by raising the temperature to 90 °C (entry 10) or 100 °C (entry 11), up to 96% NMR yield (85% isolated yield) of adduct 8 could be obtained in the same time period.Optimization studiesa
Open in a separate windowaConditions: substrate 8 (0.2 mmol) and 5 mol% catalyst in 0.4 mL of solvent (0.5 M) in a 5 mL sealed tube were heated to the temperature indicated for 15 h. Yields were determined by 1H NMR using CH2Br2 as an internal standard.b2 equiv. of TFA was used.c85% isolated yield.Using the optimized conditions, we explored the synthesis of various PHAs (Fig. 2). In addition to benzo[h]isoquinoline (8), products 12 and 13 with fluorine substitution at various positions could be generated in good yields. Similarly, benzoisoquinolines 14 and 15 bearing electron-donating methoxy groups and the dioxole-fused product 16 were also accessed efficiently. Furthermore, a phenolic ether product 17 with a potentially acid-labile N-Boc group was generated in modest yield. We found that an even more electron-donating dimethylamino group was also compatible with this chemistry, allowing for the production of 18 in 68% yield. On the other hand, adduct 19 bearing a strongly electron-withdrawing trifluoromethyl group was isolated in only modest yield. The naphtho-fused isoquinoline 20 could be generated as well; however, 20 mol% catalyst was required to realize a 35% yield. The thiophene-fused product 21 was furnished in much better yield, also with the higher catalyst loading. Although not a heterocyclic system, we found that the reaction to form phenanthrene (22) was well-behaved, providing that compound in 83% yield. In addition, an amino-substituted phenanthrene 23 was also formed in good yield. Other thiophene-containing PAHs such as 24–26 were produced efficiently. On the other hand, adduct 27 was generated only in low yield. Naphthofuran (28), which is known to have antitumor and oestrogenic properties,21 was synthesized in good yield. Finally, pharmaceutically important structures such as benzocarbazole2229 and naphthoimidazole2330 could be accessed in moderate yields with increased catalyst loading.Open in a separate windowFig. 2Substrate scope studies for hydrazine 1-catalyzed RCCOM synthesis of polycyclic heteroaromatics. a Conditions: substrate and catalyst 1·(TFA)2 (5 mol%) in THF (0.5 M) were heated to 100 °C in a 5 mL sealed tube for 15 h. Yields were determined on purified products. b 20 mol% catalyst.We also examined the scope of the olefin substitution pattern ( Entry Substrate Time (h) Yield (%) 1 15 96 2 48 5 3b 48 27 4 48 54 5 48 64
Entry | Catalyst | Solvent | Temp. (°C) | 8 yield (%) |
---|---|---|---|---|
1 | 10 | THF | 80 | 67 |
2 | 11 | THF | 80 | 53 |
3 | FeCl3 | DCE | rt | 0 |
4 | FeCl3 | DCE | 80 | 0 |
5 | TFA | THF | 80 | 0b |
6 | 10 | i-PrOH | 80 | 31 |
7 | 10 | CH3CN | 80 | 28 |
8 | 10 | EtOAc | 80 | 26 |
9 | 10 | Toluene | 80 | 24 |
10 | 10 | THF | 90 | 87 |
11 | 10 | THF | 100 | 96c |