首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   16篇
化学   64篇
力学   1篇
数学   5篇
物理学   43篇
  2019年   3篇
  2016年   5篇
  2015年   7篇
  2014年   6篇
  2013年   8篇
  2012年   12篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2003年   5篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1984年   5篇
  1980年   7篇
  1979年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1942年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
111.
Graphene is a promising material capable of driving technological advancement. It is, however, a challenge to obtain pristine graphene in large quantities given the limitation of current synthetic methods. Among the numerous methods available, the chemical approach provides an optimistic outlook and has garnered much interest within the graphene community as a potential alternative. One of the most crucial steps of the chemical approach is the chemical reduction of graphene oxide as this dictates the final quality of the graphene sheets. In recent years, much of the focus has shifted to the usage of established reducing agents or oxygen removal reagents, frequently applied in organic chemistry, onto a graphene oxide platform. Herein, the selective removal of epoxide groups and subsequent regeneration of disrupted conjugated sp2 system is highlighted, based on the synergistic effect of indium and indium(I) chloride. The morphological, structural, and electrical properties of the resulting graphene were fully characterized with X‐ray photoelectron, Fourier transform IR, solid‐state 13C NMR, and Raman spectroscopy; thermogravimetric analysis; scanning electron microscopy; and conductivity measurements. The as‐prepared graphene showed a tenfold increase in conductivity against conventional graphene treated with hydrazine reducing agent and demonstrated a high dispersion stability in ethanol. Moreover, the selective defunctionalization of the epoxide groups provides opportunities for potential tailoring of graphene properties for prospective applications.  相似文献   
112.
Compounds known to be potent against a specific protein target may potentially contain a signature profile of common substructures that is highly correlated to their potency. These substructure profiles may be useful in enriching compound libraries or for prioritizing compounds against a specific protein target. With this objective in mind, a set of compounds with known potency against six selected kinases (2 each from 3 kinase families) was used to generate binary molecular fingerprints. Each fingerprint key represents a substructure that is found within a compound and the frequency with which the fingerprint occurs was then tabulated. Thereafter, a frequent pattern mining technique was applied with the aim of uncovering substructures that are not only well represented among known potent inhibitors but are also unrepresented among known inactive compounds and vice versa. Substructure profiles that are representative of potent inhibitors against each of the 3 kinase families were thus extracted. Based on our validation results, these substructure profiles demonstrated significant enrichment for highly potent compounds against their respective kinase targets. The advantages of using our approach over conventional methods in analyzing such datasets and its application in the mining of substructures for enriching compound libraries are presented.  相似文献   
113.
Research on graphene materials has refocused on graphite oxides (GOs) in recent years. The fabrication of GO is commonly accomplished by using concentrated sulfuric acid in conjunction with: a) fuming nitric acid and KClO3 oxidant (Staudenmaier); b) concentrated nitric acid and KClO3 oxidant (Hofmann); c) sodium nitrate for in situ production of nitric acid in the presence of KMnO4 (Hummers); or d) concentrated phosphoric acid with KMnO4 (Tour). These methods have been used interchangeably in the graphene community, since the properties of GOs produced by these different methods were assumed as almost similar. In light of the wide applicability of GOs in nanotechnology applications, in which presence of certain oxygen functional groups are specifically important, the qualities and functionalities of the GOs produced by using these four different methods, side‐by‐side, was investigated. The structural characterizations of the GOs would be probed by using high resolution X‐ray photoelectron spectroscopy, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and Raman spectroscopy. Further electrochemical applicability would be evaluated by using electrochemical impedance spectroscopy and cyclic voltammetry techniques. Our analyses highlighted that the oxidation methods based on permanganate oxidant (Hummers and Tour methods) gave GOs with lower heterogeneous electron‐transfer rates and a higher amount of carbonyl and carboxyl functionalities compared with when using chlorate oxidant (Staudenmaier and Hofmann methods). These observations indicated large disparities between the GOs obtained from different oxidation methods. Such insights would provide fundamental knowledge for fine tuning GO for future applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号