首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2399篇
  免费   88篇
  国内免费   8篇
化学   1628篇
晶体学   13篇
力学   105篇
数学   344篇
物理学   405篇
  2023年   28篇
  2022年   33篇
  2021年   54篇
  2020年   59篇
  2019年   58篇
  2018年   41篇
  2017年   29篇
  2016年   71篇
  2015年   63篇
  2014年   59篇
  2013年   102篇
  2012年   147篇
  2011年   169篇
  2010年   84篇
  2009年   70篇
  2008年   152篇
  2007年   136篇
  2006年   147篇
  2005年   126篇
  2004年   67篇
  2003年   74篇
  2002年   47篇
  2001年   39篇
  2000年   24篇
  1999年   20篇
  1998年   32篇
  1997年   21篇
  1996年   23篇
  1995年   17篇
  1994年   17篇
  1993年   20篇
  1992年   20篇
  1991年   18篇
  1990年   14篇
  1989年   15篇
  1988年   12篇
  1987年   20篇
  1986年   25篇
  1985年   16篇
  1984年   23篇
  1983年   17篇
  1982年   20篇
  1981年   28篇
  1980年   30篇
  1978年   22篇
  1977年   24篇
  1976年   21篇
  1975年   16篇
  1974年   11篇
  1972年   11篇
排序方式: 共有2495条查询结果,搜索用时 15 毫秒
101.
The reaction of {C,N-[Fe(η5-C5H5)(η5-C5H3(CH2NMe2)-2)]}Li, (FcN)Li, with zinc chloride affords the diorganozinc complex (FcN)2Zn (1). In solution, 1 appears as a mixture of rac and meso diastereomers, whereas in the solid state it crystallizes solely as a rac diastereomer. The ratio of rac/meso diastereomers in solution is solvent-, temperature- and concentration-dependent, consistent with an intermolecular exchange between diastereomers. An intramolecular dynamic phenomenon involving dissociation and recoordination of Zn---N bonds was also observed. The reaction of 1 with zinc chloride yields the monoorganozinc compound (FcN)ZnCl (2) as a slightly soluble yellow microcrystalline powder.  相似文献   
102.
The thermodynamic properties of liquids trapped in microscopic pores are described in theory by the Kelvin equation, which relates the equilibrium meniscus curvature to the relative vapor pressure. We report here two series of experiments designed to test the validity of the Kelvin equation by direct measurement of the mean radius of curvature of the surface of cyclohexane condensed between crossed mica cylinders. In one series of experiments, the relative vapor pressure of the volatile cyclohexane was controlled by mixing it with a relatively involatile solute (n-dodecane or n-hexadecane). We found that the mean radius of curvature rapidly reached that predicted by the Kelvin equation at each relative vapor pressure of the volatile liquid, but that there was also a slow, but continuous, accumulation of the “involatile” solute at the point of condensation as the system approached true equilibrium. Such accumulation of very low vapor pressure materials may be one factor responsible for the discordant results reported by earlier workers. We find that the process of impurity buildup is complex, and suggest that studies of real porous systems may be affected by accumulation of “involatile” impurities through the vapor phase and by surface diffusion. The other series of experiments was designed to eliminate the impurity problem by maintaining the vapor pressure by temperature control of the pure liquid. The results from this series of experiments were not time dependent, and no evidence of contamination was found. The measured radii were within ±6% of those predicted by the Kelvin equation, for radii in the range 4–20 nm. We conclude that the thermodynamic basis of the Kelvin equation is valid in principle for menisci with radii as low as 4 nm.  相似文献   
103.
Bond dissociation energies (BDEs) and radical stabilization energies (RSEs) have been calculated for a series of models that represent a glycine-containing peptide-backbone. High-level methods that have been used include W1, CBS-QB3, U-CBS-QB3, and G3X(MP2)-RAD. Simpler methods used include MP2, B3-LYP, BMK, and MPWB1K in association with the 6-311+G(3df,2p) basis set. We find that the high-level methods produce BDEs and RSEs that are in good agreement with one another. Of the simpler methods, RBMK and RMPWB1K achieve good accuracy for BDEs and RSEs for all the species that were examined. For monosubstituted carbon-centered radicals, we find that the stabilizing effect (as measured by RSEs) of carbonyl substituents (CX=O) ranges from 24.7 to 36.9 kJ mol(-1), with the largest stabilization occurring for the CH=O group. Amino groups (NHY) also stabilize a monosubstituted alpha-carbon radical, with the calculated RSEs ranging from 44.5 to 49.5 kJ mol(-1), the largest stabilization occurring for the NH2 group. In combination, NHY and CX=O substituents on a disubstituted carbon-centered radical produce a large stabilizing effect ranging from 82.0 to 125.8 kJ mol(-1). This translates to a captodative (synergistic) stabilization of 12.8 to 39.4 kJ mol(-1). For monosubstituted nitrogen-centered radicals, we find that the stabilizing effect of methyl and related (CH2Z) substituents ranges from 25.9 to 31.7 kJ mol(-1), the largest stabilization occurring for the CH3 group. Carbonyl substituents (CX=O) destabilize a nitrogen-centered radical relative to the corresponding closed-shell molecule, with the calculated RSEs ranging from -30.8 to -22.3 kJ mol(-1), the largest destabilization occurring for the CH=O group. In combination, CH2Z and CX=O substituents at a nitrogen radical center produce a destabilizing effect ranging from -19.0 to -0.2 kJ mol(-1). This translates to an additional destabilization associated with disubstitution of -18.6 to -7.8 kJ mol(-1).  相似文献   
104.
The role of the concentration and the nature of aluminium in the creation of hierarchical porosity in both commercial and synthesized MFI zeolites have been investigated through controlled mesoporosity development by desilication in alkaline medium. Framework aluminium controls the process of framework silicon extraction and makes desilication selective towards intracrystalline mesopore formation. An optimal molar Si/Al ratio in the range 25-50 has been identified; this leads to an optimal mesoporosity centred around 10 nm and mesopore surface areas of up to 235 m(2) g(-1) while preserving the intrinsic crystalline and acidic properties. At lower framework Si/Al ratios the relatively high Al content inhibits Si extraction and hardly any mesopores are created, while in highly siliceous ZSM-5 unselective extraction of framework Si induces formation of large pores. The existence of framework Al sites in different T positions that are more or less susceptible to the alkaline treatment, and the occurrence of re-alumination, are tentative explanations for the remarkable behaviour of Al in the desilication process. The presence of substantial extra framework Al, obtained by steam treatment, inhibits Si extraction and related mesopore formation; this is attributed to re-alumination of the extraframework Al species during the alkaline treatment. Removal of extraframework Al species by mild oxalic acid treatment restores susceptibility to desilication, which is accompanied by formation of larger mesopores due to the enhanced Si/Al ratio in the acid-treated zeolite.  相似文献   
105.
106.
Amination of 1,1‐dimethylhydrazine with NH2Cl or hydroxylamine‐O‐sulfonic acid yields 2,2‐dimethyltriazanium (DMTZ) chloride ( 3 ) and sulphate ( 4 ), respectively. The DMTZ cation was paired with the nitrogen‐rich anions 5‐aminotetrazolate ( 5 ), 5‐nitrotetrazolate ( 6 ), 5,5′‐azobistetrazolate ( 7 ), and azide ( 8 ), yielding a new family of energetic salts. The synthesis was carried out by metathesis reactions of salts 3 or 4 and a suitable silver or barium salt. To minimize the risks involved when using heavy metal salts, we used electrodialysis for the synthesis of azide 8 , which avoids the use of highly sensitive species. The DMTZ derivatives were characterized by IR and multinuclear NMR spectroscopy, elemental analysis, and X‐ray diffraction. Thermal stabilities were measured using DSC analysis and their sensitivities towards classical stimuli were determined using standard tests. Lastly, the relationship between hydrogen bonding in the solid state and sensitivity is discussed.  相似文献   
107.
A peptide has been designed so that its chelating affinity for one type of metal ion regulates its affinity for a second, different type of metal ion. The prochelator peptide (PCP), which is a fusion of motifs evocative of calcium loops and zinc fingers, forms a 1 : 2 Zn : peptide complex at pH 7.4 that increases its affinity for Zn2+ ∼3-fold in the presence of Tb3+ (log β2 from 13.8 to 14.3), while the 1 : 1 luminescent complex with Tb3+ is brighter, longer lived, and 20-fold tighter in the presence of Zn2+ (log K from 6.2 to 7.5). This unique example of cooperative, heterometallic allostery in a biologically compatible construct suggests the possibility of designing conditionally active metal-binding agents that could respond to dynamic changes in cellular metal status.  相似文献   
108.
(Pd+Ce)/SiO2 catalysts prepared by decomposition of organometallic complexes of Ce and Pd have higher activity, dispersity and selectivity in methanol synthesis than Pd/SiO2 catalysts.
, (Pd+Ce)/SiO2 , Ce Pd, Pd/SiO2.
  相似文献   
109.
Understanding nanoparticle-formation reactions requires multi-technique in situ characterisation, since no single characterisation technique provides adequate information. Here, the first combined small-angle X-ray scattering (SAXS)/wide-angle X-ray scattering (WAXS)/total-scattering study of nanoparticle formation is presented. We report on the formation and growth of yttria-stabilised zirconia (YSZ) under the extreme conditions of supercritical methanol for particles with Y(2)O(3) equivalent molar fractions of 0, 4, 8, 12 and 25 %. Simultaneous in situ SAXS and WAXS reveals a quick formation (seconds) of sub-nanometre amorphous material forming larger agglomerates with subsequent slow crystallisation (minutes) into nanocrystallites. The amount of yttria dopant is shown to strongly affect the crystallite size and unit-cell dimensions. At yttria-doping levels larger than 8 %, which is known to be the stoichiometry with maximum ionic conductivity, the strain on the crystal lattice is significantly increased. Time-resolved nanoparticle size distributions are calculated based on whole-powder-pattern modelling of the WAXS data, which reveals that concurrent with increasing average particle sizes, a broadening of the particle-size distributions occur. In situ total scattering provides structural insight into the sub-nanometre amorphous phase prior to crystallite growth, and the data reveal an atomic rearrangement from six-coordinated zirconium atoms in the initial amorphous clusters to eight-coordinated zirconia atoms in stable crystallites. Representative samples prepared ex situ and investigated by transmission electron microscopy confirm a transformation from an amorphous material to crystalline nanoparticles upon increased synthesis duration.  相似文献   
110.
The binding affinity of a drug-like molecule depends among other things on the availability of the bioactive conformation. If the bioactive conformation has a significantly higher energy than the global minimum energy conformation, then the molecule is unlikely to bind to its target. Determination of the global minimum energy conformation and calculation of conformational penalties of binding is a prerequisite for prediction of reliable binding affinities. Here, we present a simple and computationally efficient procedure to estimate the global energy minimum for a wide variety of structurally diverse molecules, including polar and charged compounds. Identifying global energy minimum conformations of such compounds with force field methods is problematic due to the exaggeration of intramolecular electrostatic interactions. We demonstrate that the global energy minimum conformations of zwitterionic compounds generated by conformational analysis with modified electrostatics are good approximations of the conformational distributions predicted by experimental data and with molecular dynamics performed in explicit solvent. Finally the method is used to calculate conformational penalties for zwitterionic GluA2 agonists and to filter false positives from a docking study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号