首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   3篇
  国内免费   1篇
化学   66篇
力学   1篇
数学   4篇
物理学   16篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   7篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2008年   7篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1989年   2篇
  1986年   4篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
排序方式: 共有87条查询结果,搜索用时 31 毫秒
41.
In our ongoing investigations of heteropolyniobate chemistry, a phase featuring decorated, A-type trivacant alpha-Keggin ions linked by their charge-balancing sodium cations has been isolated and structurally characterized. This is the first heteropolyniobate reported that has a true lacunary structure type. Na15[(PO2)3PNb9O34] x 22 H2O (1) [triclinic space group P1 (No. 2); a = 12.242 (2) A, b = 12.291 (3) A, c = 22.056 (4) A; alpha = 93.12 (3) degrees, beta = 99.78 (3) degrees, gamma = 119.84 (3) degrees; Z = 4, V = 2799.2 (10) A3] is composed of bilayers of the heteropolyanions alternating with layers of hydrated Na+ cations. Sodium cations also bridge the clusters within their layers through Na-O(t)-Nb, Na-O(b)-Nb2, and Na-O(t)-P bonds (t = terminal and b = bridging). This phase is poorly soluble in water, suggesting that it is more characteristic of a framework of linked heteropolyanions rather than a water-soluble heteropolyanion salt. Two-dimensional solid-state 23Na multiple-quantum magic angle spinning (MAS) NMR of 1 reveals five distinctive chemical and structural environments for sodium, which agrees with the crystallographic data. The 23Na and 1H MAS NMR studies further illustrate the rigid and immobile nature of this framework of cations and anions.  相似文献   
42.
Zeolitic imidazolate framework (ZIF) biocomposites show the capacity to protect and deliver biotherapeutics. To date, the progress in this research area is based on laboratory batch methods. Now, the first continuous flow synthetic method is presented for the encapsulation of a model protein (bovine serum albumin, BSA) and a clinical therapeutic (α1‐antitrypsin, AAT) in ZIF‐8. The in situ kinetics of nucleation, growth, and crystallization of BSA@ZIF‐8 were studied by small‐angle X‐ray scattering. By controlling the injection time of ethanol, the particle growth could be quenched by ethanol‐induced crystallization from amorphous particles to ZIF‐8 crystals. The particle size of the biocomposite was tuned in the 40–100 nm range by varying residence time prior to introduction of ethanol. As a proof‐of‐concept, this procedure was used for the encapsulation of AAT in ZIF‐8. Upon release of the biotherapeutic from the composite, the trypsin inhibitor function of AAT was preserved.  相似文献   
43.
Ferric sulfate trihydrate has been synthesized at 403 K under hydrothermal conditions. The structure consists of quadruple chains of [Fe2(SO4)3(H2O)3] parallel to [010]. Each quadruple chain is composed of equal proportions of FeO4(H2O)2 octahedra and FeO5(H2O) octahedra sharing corners with SO4 tetrahedra. The chains are joined to each other by hydrogen bonds. This compound is a new hydration state of Fe2(SO4)3·nH2O; minerals with n = 0, 5, 7.25–7.75, 9 and 11 are found in nature.  相似文献   
44.
The title compound, [Mg2(C12H14O4)2]n, is the first example of an s‐block metal adamantanedicarboxylate coordination polymer. The asymmetric unit comprises two crystallographically unique MgII centers and two adamantane‐1,3‐dicarboxylate ligands. The compound is constructed from a combination of chains of corner‐sharing magnesium‐centered polyhedra, parallel to the a axis, connected by organic linkers to form a layered polymer. The two MgII centers are present in distorted tetrahedral and octahedral coordination environments derived from carboxylate O atoms. Tetrahedrally coordinated MgII centers have been reported in organometallic compounds, but this is the first time that such coordination has been observed in a magnesium‐based coordination polymer. The bond valance sums of the two MgII centers are 2.05 and 2.11 valence units, matching well with the expected value of 2.  相似文献   
45.
46.
Abstract

A phase transition from Ca(OH)2 I (portlandite) to Ca(OH)2 II at high pressure and temperature has been confirmed, using in situ x-ray diffraction in a multianvil high pressure device (DIA). The structure was determined at 9.5 GPa and room temperature from data collected after heating the sample at 300°C at 7.2 GPa in a diamond anvil cell. Both the Le Bail fit and preliminary Rietveld refinement suggest that the new phase, which reverts to Ca(OH), I during pressure release, has a structure related to that of baddeleyite (ZrO1); it is monoclinic (P21/c) with a= 4.887(2), b= 5.834(2), c = 5.587(2), β = 99.74(2)°. The coordination number of Ca increases from six to seven (5 + 2) across the transition. At 500°C, the phase boundary is bracketed at 5.7 ± 0.4 GPa by reversal experiments performed in the DIA.  相似文献   
47.
A free-catalyst microwave-assisted cyanation of brominated Tröger's base derivatives ( 2a - f ) is reported. The procedure is simple, efficient, and clean affording the nitrile compounds ( 3a - e, I ) in very good yields. Complete assignment of 1H and 13C chemical shifts of 2a - f, I and 3a - d, I was achieved using gradient selected 1D nuclear magnetic resonance (NMR) techniques (1D zTOCSY, PSYCHE, DPFGSE NOE, and DEPT), homonuclear 2D NMR techniques (gCOSY and zTOCSY), and heteronuclear 2D NMR techniques (gHSQCAD/or pure-shift gHSQCAD, gHMBCAD, bsHSQCNOESY, and gHSQCAD-TOCSY) with adiabatic pulses. Determination of the long-range proton–proton coupling constants nJHH (n = 4, 5, 6) was accomplished by simultaneous irradiation of two protons at appropriate power levels. In turn, determined coupling constants were tested by an iterative simulation program by calculating the 1H NMR spectrum and comparing it to the experimental spectrum. The excitation-sculptured indirect-detection experiment (EXSIDE) and 1H-15N CIGARAD-HMBC (constant time inverse-detection gradient accordion rescaled heteronuclear multiple bond correlation) were applied for determination of long-range carbon–proton coupling constants nJCH (n = 2, 3, and 4) and for assignment of 15N chemical shift at natural abundance, respectively. DFT/B3LYP optimization studies were performed in order to determine the geometry of 2c using 6-31G(d,p), 6-311G(d,p), and 6–311 + G(d,p) basis sets. For calculation of 1H and 13C chemical shifts, nJHH (n = 2, 3, 4, 5, and 6), and nJCH (n = 1, 2, 3, and 4) coupling constants, the GIAO method was employed at the B3LYP/6-31G(d,p), B3LYP/6-31+G(d,p), B3LYP/6-311+G(d,p), B3LYP/6-311++G(2d,2p), B3LYP/cc-pVTZ), and B3LYP/aug-cc-pVTZ) levels of theory. For the first time, a stereochemical dependence magnitude of the long-range nJHH (n = 4, 5, and 6) and nJCH (n = 1, 2, 3, 4, and 5) have been found in bromo-substituted analogues of Tröger's bases.  相似文献   
48.
A highly accurate analytical solution is derived to the electromagnetic problem of a short vertical wire antenna located on a stratified ground. The derivation consists of three steps. First, the integration path of the integrals describing the fields of the dipole is deformed and wrapped around the pole singularities and the two vertical branch cuts of the integrands located in the upper half of the complex plane. This allows to decompose the radiated field into its three contributions, namely the above-surface ground wave, the lateral wave, and the trapped surface waves. Next, the square root terms responsible for the branch cuts are extracted from the integrands of the branch-cut integrals. Finally, the extracted square roots are replaced with their rational representations according to Newton’s square root algorithm, and residue theorem is applied to give explicit expressions, in series form, for the fields. The rigorous integration procedure and the convergence of square root algorithm ensure that the obtained formulas converge to the exact solution. Numerical simulations are performed to show the validity and robustness of the developed formulation, as well as its advantages in terms of time cost over standard numerical integration procedures.  相似文献   
49.
Powder diffraction patterns of the zeolites natrolite (Na(16)Al(16)Si(24)O(80).16H(2)O), mesolite (Na(5.33)Ca(5.33)Al(16)Si(24)O(80).21.33H(2)O), scolecite (Ca(8)Al(16)Si(24)O(80).24H(2)O), and a gallosilicate analogue of natrolite (K(16)Ga(16)Si(24)O(80).12H(2)O), all crystallizing with a natrolite framework topology, were measured as a function of pressure up to 5.0 GPa with use of a diamond-anvil cell and a 200 microm focused monochromatic synchrotron X-ray beam. Under the hydrostatic conditions mediated by an alcohol and water mixture, all these materials showed an abrupt volume expansion (ca. 2.5% in natrolite) between 0.8 and 1.5 GPa without altering the framework topology. Rietveld refinements using the data collected on natrolite show that the anomalous swelling is due to the selective sorption of water from the pressure-transmission fluid expanding the channels along the a- and b-unit cell axes. This gives rise to a "superhydrated" phase of natrolite with an approximate formula of Na(16)Al(16)Si(24)O(80).32H(2)O, which contains hydrogen-bonded helical water nanotubes along the channels. In mesolite, which at ambient pressure is composed of ordered layers of sodium- and calcium-containing channels in a 1:2 ratio along the b-axis, this anomalous swelling is accompanied by a loss of the superlattice reflections (b(mesolite) = 3b(natrolite)). This suggests a pressure-induced order-disorder transition involving the motions of sodium and calcium cations either through cross-channel diffusion or within the respective channels. The powder diffraction data of scolecite, a monoclinic analogue of natrolite where all sodium cations are substituted by calcium and water molecules, reveal a reversible pressure-induced partial amorphization under hydrostatic conditions. Unlike the 2-dimensional swelling observed in natrolite and mesolite, the volume expansion of the potassium gallosilicate natrolite is 3-dimensional and includes the lengthening of the channel axis. In addition, the expanded phase, stable at high pressure, is retained at ambient conditions after pressure is released. The unprecedented and intriguing high-pressure crystal chemistry of zeolites with the natrolite framework topology is discussed here relating the different types of volume expansion to superhydration.  相似文献   
50.
The crystal structure of the selective Cs+ ion exchanger D1.6H0.4Ti2SiO7.D2.66H0.34O1.5, known as crystalline silicotitanate or CST, has been determined in both native (D-CST) and in the Cs+-exchanged forms ((Cs, D)-CST) from angle-dispersive and time-of-flight neutron diffraction studies. The final fully exchange Cs+ form transformed from D-CST with unit cell parameters a = 11.0704(3) A c = 11.8917(5) A and space group P42/mbc, to one with a = 7.8902(1) A c = 11.9051(4) A and space group P42/mcm. Rietveld structure refinements of both D-CST and (Cs, D)-CST suggest the transition, and ultimately the selectivity, is driven by changes in the positions of water molecules, in response to the initial introduction of Cs+. The changes in water position appear to disrupt the D-O-O-D dihedral associated with the CST framework in space group P42/mbc which ultimately leads to the structural transition. The new geometric arrangement of the water-deuteroxyl network in (Cs, D)-CST suggests that Dwater-Ddeuteroxyl repulsion forced by Cs+ exchange drives the structural transformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号