首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435315篇
  免费   6411篇
  国内免费   1724篇
化学   238456篇
晶体学   6139篇
力学   18581篇
综合类   14篇
数学   51097篇
物理学   129163篇
  2021年   2638篇
  2020年   2995篇
  2019年   2972篇
  2018年   2976篇
  2017年   2887篇
  2016年   5863篇
  2015年   4901篇
  2014年   6548篇
  2013年   19945篇
  2012年   15644篇
  2011年   19427篇
  2010年   12060篇
  2009年   12073篇
  2008年   17719篇
  2007年   18013篇
  2006年   17315篇
  2005年   15819篇
  2004年   14213篇
  2003年   12486篇
  2002年   12234篇
  2001年   13777篇
  2000年   10660篇
  1999年   8357篇
  1998年   6639篇
  1997年   6494篇
  1996年   6532篇
  1995年   5945篇
  1994年   5589篇
  1993年   5309篇
  1992年   5941篇
  1991年   5791篇
  1990年   5344篇
  1989年   5189篇
  1988年   5475篇
  1987年   5070篇
  1986年   4899篇
  1985年   7155篇
  1984年   7177篇
  1983年   5845篇
  1982年   6308篇
  1981年   6245篇
  1980年   6029篇
  1979年   6107篇
  1978年   6162篇
  1977年   6108篇
  1976年   6012篇
  1975年   5886篇
  1974年   5680篇
  1973年   5910篇
  1972年   3455篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
71.
Erosion and sediments transport processes have a great impact on industrial structures and on water quality. Despite its limitations, the Saint‐Venant‐Exner system is still (and for sure for some years) widely used in industrial codes to model the bedload sediment transport. In practice, its numerical resolution is mostly handled by a splitting technique that allows a weak coupling between hydraulic and morphodynamic distinct softwares but may suffer from important stability issues. In recent works, many authors proposed alternative methods based on a strong coupling that cure this problem but are not so trivial to implement in an industrial context. In this work, we then pursue 2 objectives. First, we propose a very simple scheme based on an approximate Riemann solver, respecting the strong coupling framework, and we demonstrate its stability and accuracy through a number of numerical test cases. However, second, we reinterpret our scheme as a splitting technique and we extend the purpose to propose what should be the minimal coupling that ensures the stability of the global numerical process in industrial codes, at least, when dealing with collocated finite volume method. The resulting splitting method is, up to our knowledge, the only one for which stability properties are fully demonstrated.  相似文献   
72.
73.
74.
75.
76.
In this paper, we have significantly modified an existing model for calculating the zeta potential and streaming potential coefficient of porous media and tested it with a large, recently published, high-quality experimental dataset. The newly modified model does not require the imposition of a zeta potential offset but derives its high salinity zeta potential behaviour from Stern plane saturation considerations. The newly modified model has been implemented as a function of temperature, salinity, pH, and rock microstructure both for facies-specific aggregations of the new data and for individual samples. Since the experimental data include measurements on samples of both detrital and authigenic overgrowth sandstones, it was possible to model and test the effect of widely varying microstructural properties while keeping lithology constant. The results show that the theoretical model represents the experimental data very well when applied to model data for a particular lithofacies over the whole salinity, from 10?5 to 6.3 mol/dm3, and extremely well when modelling individual samples and taking individual sample microstructure into account. The new model reproduces and explains the extreme sensitivity of zeta and streaming potential coefficient to pore fluid pH. The low salinity control of streaming potential coefficient by rock microstructure is described well by the modified model. The model also behaves at high salinities, showing that the constant zeta potential observed at high salinities arises from the development of a maximum charge density in the diffuse layer as it is compressed to the thickness of one hydrated metal ion.  相似文献   
77.
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号