Gas-phase electrophoresis yields size distributions of polydisperse, aerosolized analytes based on electrophoretic principles. Nanometer-sized, surface-dry, single-charged particles are separated in a high laminar sheath flow of particle-free air and an orthogonal tunable electric field. Additionally, nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA) data are particle-number based. Therefore, small particles can be detected next to larger ones without a bias, for example, native proteins next to their aggregates. Analyte transition from the liquid to the gas phase is a method inherent prerequisite. In this context, nonvolatile sample buffers influence results. In the worst case, the (bio-)nanoparticle signal is lost due to an increased baseline and unspecific clustering of nonvolatile components. We present a novel online hyphenation of liquid chromatography and gas-phase electrophoresis, coupling a size-exclusion chromatography (SEC) column to an advanced nES GEMMA. Via this novel approach, it is possible to (i) separate analyte multimers already present in liquid phase from aggregates formed during the nES process, (ii) differentiate liquid phase and spray-induced multimers, and (iii) to remove nonvolatile buffer components online before SEC–nES GEMMA analysis. Due to these findings, SEC–nES GEMMA has the high potential to help to understand aggregation processes in biological buffers adding the benefit of actual size determination for noncovalent assemblies formed in solution. As detection and characterization of protein aggregation in large-scale pharmaceutical production or sizing of noncovalently bound proteins are findings directly related to technologically and biologically relevant situations, we proposed the presented method to be a valuable addition to LC-MS approaches. 相似文献
Journal of Radioanalytical and Nuclear Chemistry - The usage of silver as a filtering material for removal of iodine from the gas phase of a lead–bismuth eutectic based nuclear reactor was... 相似文献
Journal of Mathematical Chemistry - In this work we perform analytical and statistical studies of the Rodríguez–Velázquez (RV) indices on graphs G. The topological RV(G) indices,... 相似文献
In this study, the staining properties of selected amino acids with Brassica oleraceae extract in alum and alum-free media were investigated. Basic, acidic and neutral amino acids (arginine, glutamic acid and glycine) were used to investigate the effect of staining. It was determined that all amino acids were stained in alum media. In the second step, the R group of amino acids found in the proteins of the cell nucleus was reacted with salicyl aldehyde. This reaction was successful only with Arginine. The staining properties of the newly formed compound were also investigated in alum and alum-free environments. Evaluation of the results was done using FT-IR and 1H NMR methods. All compounds were optimized with the Gaussian G09 program (DFT/B3LYP/6.311 ?G(d.p) basic set. HOMO, LUMO and HOMO-LUMO gap values were determined. Chemical reaction capabilities of amino acids were discussed with the help of HOMO-LUMO gap values. 相似文献
Plasma Chemistry and Plasma Processing - The influence of plasma power on liquid precursor decomposition in suspension plasma spray (SPS) is studied with optical emission spectroscopy (OES). The... 相似文献
Cationic triangulenes, and related helicenes, constitute a rich class of dyes and fluorophores, usually absorbing and emitting light at low energy, in the orange to red domains. Recently, to broaden the scope of applications, regioselective late-stage functionalizations on these core moieties have been developed. For instance, with the introduction of electron-donating groups (EDGs), important bathochromic shifts are observed pushing absorptions towards or in the near-infrared (NIR) spectral domain while emissive properties disappear essentially completely. Herein, to upset this drawback, acetylene derivatives of cationic diazaoxa triangulenes (DAOTA) and [4]helicenes are prepared (16 examples). Contrary to other EDG-functionalized derivatives, C≡C− functionalized products remain broadly fluorescent, with red-shifted absorptions (Δλabs up to 25 nm) and emissions (Δλem up to 73 nm, ΦPL up to 51 %). Quite interestingly, a general dynamic stereoisomerism phenomenon is evidenced for the compounds derived from achiral DAOTA cores. At low temperature in 1H NMR spectroscopy (218 K), N−CH2 protons become diastereotopic with chemical shifts differences (Δδ) as high as +1.64 ppm. The signal coalescence occurs around 273 K with a barrier of ∼12 kcal mol−1. This phenomenon is due to planar chiral conformations (Sp and Rp configurations), induced by the geometry of the alkyl (n-propyl) side-chains next to the acetylenic substituents. Ion pairing studies with Δ-TRISPHAT anion not only confirm the occurrence of the chiral conformations but evidence a moderate but definite asymmetric induction from the chiral anion onto the cations. Finally, DFT calculations offer a valuable insight on the geometries, the corresponding stereodynamics and also on the very large difference in NMR for some of the diastereotopic protons. 相似文献
Although cellulose nanomaterials have promising properties and performance in a wide application space, one hinderance to their wide scale industrial application has been associated with their economics of dewatering and drying and the ability to redisperse them back into suspension without introducing agglomerates or lose of yield. The present work investigates the dewatering of aqueous suspensions of cellulose nanofibrils (CNFs) using ultrasound as a potentially low-cost, non-thermal, and scalable alternative to traditional heat-based drying methods such as spray drying. Specifically, we use vibrating mesh transducers to develop a direct-contact mode ultrasonic dewatering platform to remove water from CNF suspensions in a continuous manner. We demonstrate that the degree of dewatering is modulated by the number of transducers, their spatial configuration, and the flow rate of the CNF suspension. Water removal of up to 72 wt.% is achieved, corresponding to a final CNF concentration of 11 wt.% in 30 min using a two-transducer configuration. To evaluate the redispersibility of the dewatered CNF material, we use a microscopic analysis to quantify the morphology of the redispersed CNF suspension. By developing a custom software pipeline to automate image analysis, we compare the histograms of the dimensions of the redispersed dewatered fibrils with the original CNF samples and observe no significant difference, suggesting that no agglomeration is induced due to ultrasonic dewatering. We also perform SEM analysis to evaluate the nanoscale morphology of these fibrils showing a width range of 20 nm–4 um. We estimate that this ultrasound dewatering technique is also energy-efficient, consuming up to 36% less energy than the enthalpy of evaporation per kilogram of water. Together with the inexpensive cost of transducers (<?$1), the potential for scaling up in parallel flow configurations, and excellent redispersion of the dewatered CNFs, our work offers a proof-of-concept of a sustainable CNF dewatering system, that addresses the shortcomings of existing techniques.