首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   371528篇
  免费   6326篇
  国内免费   1989篇
化学   206593篇
晶体学   4900篇
力学   14266篇
综合类   84篇
数学   47132篇
物理学   106868篇
  2021年   2767篇
  2020年   3151篇
  2019年   3137篇
  2018年   3310篇
  2017年   3110篇
  2016年   6021篇
  2015年   5136篇
  2014年   6487篇
  2013年   17754篇
  2012年   14367篇
  2011年   17093篇
  2010年   10765篇
  2009年   10415篇
  2008年   15425篇
  2007年   15398篇
  2006年   14736篇
  2005年   13567篇
  2004年   11992篇
  2003年   10491篇
  2002年   10122篇
  2001年   11027篇
  2000年   8700篇
  1999年   6881篇
  1998年   5531篇
  1997年   5348篇
  1996年   5545篇
  1995年   4902篇
  1994年   4740篇
  1993年   4520篇
  1992年   5009篇
  1991年   4754篇
  1990年   4490篇
  1989年   4199篇
  1988年   4468篇
  1987年   4141篇
  1986年   4031篇
  1985年   5727篇
  1984年   5783篇
  1983年   4682篇
  1982年   5066篇
  1981年   5112篇
  1980年   4826篇
  1979年   4896篇
  1978年   4890篇
  1977年   4882篇
  1976年   4811篇
  1975年   4709篇
  1974年   4560篇
  1973年   4722篇
  1972年   2703篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
To enable the effective and reliable use of structural adhesive bonding in automotive applications, the cohesive properties of a joint need to be determined over a wide range of loading rates. In this paper, a strategy for determining these properties has been described and used to analyze a set of experimental results presented in a companion paper. In the particular system studied, a crack growing in a toughened quasi-static mode could make a catastrophic transition to a brittle mode of fracture. The cohesive parameters for both the toughened and brittle modes of crack growth were determined by comparing numerical predictions from cohesive-zone simulations to the results of experimental tests performed using double-cantilever beam specimens and tensile tests. The cohesive parameters were found to be essentially rate-independent for the toughened mode, but the toughness dropped by a factor of four upon a transition to the brittle mode. The results of wedge tests were used as an independent verification of the cohesive parameters, and to verify that the quasi-static properties remained rate-independent to very high crack velocities corresponding to conditions of low-velocity impact. The effects of friction, and the use of the wedge test to determine cohesive parameters, were also explored.  相似文献   
992.
In this paper, a projection method is presented for solving the flow problems in domains with moving boundaries. In order to track the movement of the domain boundaries, arbitrary‐Lagrangian–Eulerian (ALE) co‐ordinates are used. The unsteady incompressible Navier–Stokes equations on the ALE co‐ordinates are solved by using a projection method developed in this paper. This projection method is based on the Bell's Godunov‐projection method. However, substantial changes are made so that this algorithm is capable of solving the ALE form of incompressible Navier–Stokes equations. Multi‐block structured grids are used to discretize the flow domains. The grid velocity is not explicitly computed; instead the volume change is used to account for the effect of grid movement. A new method is also proposed to compute the freestream capturing metrics so that the geometric conservation law (GCL) can be satisfied exactly in this algorithm. This projection method is also parallelized so that the state of the art high performance computers can be used to match the computation cost associated with the moving grid calculations. Several test cases are solved to verify the performance of this moving‐grid projection method. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   
993.
The interplay between inertia and elasticity is examined for transient free‐surface flow inside a narrow channel. The lubrication theory is extended for the flow of viscoelastic fluids of the Oldroyd‐B type (consisting of a Newtonian solvent and a polymeric solute). While the general formulation accounts for non‐linearities stemming from inertia effects in the momentum conservation equation, and the upper‐convected terms in the constitutive equation, only the front movement contributes to non‐linear coupling for a flow inside a straight channel. In this case, it is possible to implement a spectral representation in the depthwise direction for the velocity and stress. The evolution of the flow field is obtained locally, but the front movement is captured only in the mean sense. The influence of inertia, elasticity and viscosity ratio is examined for pressure‐induced flow. The front appears to progress monotonically with time. However, the velocity and stress exhibit typically a strong overshoot upon inception, accompanied by a plug‐flow behaviour in the channel core. The flow intensity eventually diminishes with time, tending asymptotically to Poiseuille conditions. For highly elastic liquids the front movement becomes oscillatory, experiencing strong deceleration periodically. A multiple‐scale solution is obtained for fluids with no inertia and small elasticity. Comparison with the exact (numerical) solution indicates a wide range of validity for the analytical result. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
994.
This paper attempts to reproduce numerically previous experimental findings with opposed flows and extends their range to quantify the effects of upstream pipes and nozzles with inviscid, laminar and turbulent flows. The choice of conservation equations, boundary conditions, algorithms for their solution, the degree of grid dependence, numerical diffusion and the validity of numerical approximations are justified with supporting calculations where necessary. The results of all calculations on the stagnation plane show maximum strain rates close to the annular exit from the nozzles and pipes for lower separations and it can be expected that corresponding reacting flows will tend to extinguish in this region with the extinction moving towards the axis. With laminar flows, the maximum strain rate increased with Reynolds number and the maximum values were generally greater than with inviscid flows and smaller than with turbulent flows. With large separations, the strain rates varied less and this explains some results with reacting flows where the extinction appeared to begin on the axis. The turbulent‐flow calculations allowed comparison of three common variants of a two‐equation first‐moment closure. They provided reasonable and useful indications of strain rates but none correctly represented the rms of velocity fluctuations on the axis and close to the stagnation plane. As expected, those designed to deal with this problem produced results in better agreement with experiment but were still imperfect. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
995.
A model based technique for online identification of malfunctions in rotor systems is discussed. Presence of fault changes the dynamic behavior of the system. This change is taken into account by equivalent loads acting on the undamaged system model. Equivalent loads are fictitious forces and moments acting on the undamaged system model, which generate a dynamic behavior identical to that of the real damaged system. The mathematical representation of equivalent loads is referred to as Fault Model. The work focuses on developing a fault model for a transverse fatigue crack in shaft and testing it through simulated studies. The basic principle of the technique is validated for unbalance identification, through numerical simulations as well as by experiments on a real rotor system.  相似文献   
996.
997.
A one-dimensional harmonic oscillator in a box is used to introduce the oblique-basis concept. The method is extended to the nuclear shell model by combining traditional spherical shell model states, which yield a diagonal representation of the usual single-particle interaction, with SU(3) shell model collective configurations that track deformation. An application to 24Mg, using the realistic two-body interaction of Wildenthal, is used to explore the validity of this mixed-mode shell-model scheme. The theory is also applied to lower pf-shell nuclei, 44–48Ti and 48Cr, using the Kuo-Brown-3 interaction. These nuclei show strong SU(3) symmetry breaking due mainly to the single-particle spin-orbit splitting. Nevertheless, the results also show that yrast band B(E2) values are insensitive to fragmentation of SU(3) symmetry. Specifically, the quadrupole collectivity as measured by B(E2) strengths remains high even though the SU(3) symmetry is rather badly broken. The results suggest that an oblique-basis mixed-mode shell-model theory may be useful in situations where competing degrees of freedom dominate the dynamics.  相似文献   
998.
The turbidity, photoluminescence, and photo-stimulated luminescence (PSL) of fluorozirconate glass containing barium chloride nano- and micro-crystals have been measured for samples prepared by isochronal (70 min) annealing over a temperature range of 220–283°C, and correlated with the microstructure as determined by X-ray diffraction measurements. Crystallization of hexagonal phase barium chloride commences at around 220°C, but until 275°C the material retains excellent transparency although it displays negligible PSL. Between 275°C and 277°C, the hexagonal phase converts to the orthorhombic phase, the transparency abruptly decreases, and the PSL rises to a value of around 13% of that found for the commercial storage phosphor BaFBr:Eu. For a slightly higher temperature of 280°C, new phases appear which correspond to the onset of bulk crystallization, and at 283°C the relative PSL rises to 33%, while the transparency falls further. The trade-off between optical transparency and PSL over this narrow temperature window for X-ray imaging plate applications is briefly discussed.  相似文献   
999.
We found a significant PSL effect in Eu2+-doped fluorozirconate glasses (ZBLAN) which were additionally doped with Br or Cl ions. The PSL is attributed to the characteristic emission of Eu2+ present in nano-crystallites of BaBr2 or BaCl2, which form in the glass upon annealing. The metastable hexagonal form of BaX2 (X=Br,Cl) is always formed first before it is converted into the stable orthorhombic form. The particle size increases upon annealing and so does the PSL efficiency of the glass ceramic. However, there is a saturation of the PSL efficiency, which is for Br doping about 9% and for Cl-doping about 80% of the Eu-doped BaFBr standard. The particle size was determined by transmission electron microscopy (TEM). The TEM results show a clear tendency for bigger particles for longer annealing at the expense of its number. The particle size for the most efficient phosphor is about 100 nm.  相似文献   
1000.
Low-threshold interband cascade lasers operating above room temperature   总被引:1,自引:0,他引:1  
Mid-IR type-II interband cascade lasers were demonstrated in pulsed mode at temperatures up to 325 K and in continuous mode up to 200 K. At 80 K, the threshold current density was 8.9 A/cm2 and a continuous wave output power of 140 mW/facet was obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号