首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   3篇
化学   47篇
力学   10篇
数学   8篇
物理学   102篇
  2023年   5篇
  2022年   2篇
  2021年   3篇
  2020年   12篇
  2019年   9篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   1篇
  2012年   5篇
  2011年   8篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   6篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2003年   11篇
  2002年   5篇
  2001年   6篇
  2000年   8篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1975年   3篇
  1974年   6篇
  1973年   3篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1967年   3篇
  1961年   1篇
  1959年   1篇
  1958年   1篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
101.
[Br3][SbF6] and [Br3][IrF6] were synthesized by interaction of BrF3 with Sb2O3 or iridium metal, respectively. The former compound crystallizes in the orthorhombic space group Pbcn (No. 60) with a=11.9269(7), b=11.5370(7), c=12.0640(6) Å, V=1660.01(16) Å3, Z=8 at 100 K. The latter compound crystallizes in the triclinic space group P (No. 2) with a=5.4686(5), b=7.6861(8), c=9.9830(9) Å, α=85.320(8), β=82.060(7), γ=78.466(7)°, V=406.56(7) Å3, Z=2 at 100 K. Both compounds contain the cation [Br3]+, which has a bent structure and is coordinated by octahedron-like anions [MF6] (M=Sb, Ir). Experimentally obtained cell parameters, bond lengths, and angles are confirmed by solid-state DFT calculations, which differ from the experimental values by less than 2 %. Relativistic effects on the structure of the tribromonium(1+) cation are studied computationally and found to be small. For the heaviest analogues containing At and Ts, however, pronounced relativistic effects are found, which lead to a linear structure of the polyhalogen cation.  相似文献   
102.
Viscoelastic vortical fluid motion in a strongly coupled particle system has been observed experimentally. Optical tracking of particle motion in a complex plasma monolayer reveals high grain mobility and large scale vortex flows coexistent with partial preservation of the global hexagonal lattice structure. The transport of particles is superdiffusive and ascribed to Lévy statistics on short time scales and to memory effects on the longer scales influenced by cooperative motion. At these longer time scales, the transport is governed by vortex flows covering a wide spectrum of temporal and spatial scales.  相似文献   
103.
We correct the crystal structure of MnF3, of which the space group was reported as monoclinic C2/c (no. 15) with a = 8.9202, b = 5.0472, c = 13.4748 Å, β = 92.64°, V = 606.02 ų, Z = 12, mS48, T not given, likely 298 K. In the structure model proposed here, we use a unit cell of one third of the former volume. The ruby red crystals of MnF3 were synthesized by a high-pressure/high-temperature method, where MnF4 was used as a starting material. As determined on a single crystal, MnF3 crystallizes in the monoclinic space group I2/a (no. 15) with a = 5.4964(11), b = 5.0084(10), c = 7.2411(14) Å, β = 93.00(3)°, V = 199.06(7) Å3, Z = 4, mS16, T = 183(2) K. The crystal structure of MnF3 is related by a direct group-subgroup transition to the VF3 structure-type. We performed quantum chemical calculations on the crystal structure to allow the assignment of bands of the obtained vibrational spectra.  相似文献   
104.
The crystal structure of β-MnF4 has finally been elucidated. It crystallizes in the non-centrosymmetric space group R3c, no. 161, hR360, with the lattice parameters a = 19.390(3), c = 12.940(3) Å, V = 4213.3(14) Å3, Z = 72, T = 100 K. It is a 4a × 4a superstructure of the VF3 (FeF3) structure type. The Mn atoms are coordinated octahedron-like by F atoms, of which two are bound terminal, while the other act as μ-bridging F atoms to other Mn atoms forming a three-dimensional infinite network structure which can be described by the Niggli formula 3[MnF4/2F2/1]. Voids on the metal sites, which are occupied in the VF3 structure, are grouped together in the shape of a “star” with approximate D3h symmetry. We prepared β-MnF4 photochemically according to the literature and obtained a phase-pure powder as evidenced by X-ray diffraction at room temperature. The lattice parameters are a = 19.566(3), c = 12.984(2) Å, V = 4304(1) Å3. IR and Raman spectra recorded on the powder show that β-MnF4 has also been obtained free of moisture, HF, and O2+ containing compounds, however MnF3 is likely present as a magnetic impurity. We observe thermal decomposition of MnF4 to MnF2 and not MnF3.  相似文献   
105.
B. Ivlev 《Annals of Physics》2011,326(4):979-1001
Quantum tunneling through a two-dimensional static barrier becomes unusual when a momentum of an electron has a tangent component with respect to a border of the prebarrier region. If the barrier is not homogeneous in the direction perpendicular to tunneling a fraction of the electron state is waves propagating away from the barrier. When the tangent momentum is zero a mutual interference of the waves results in an exponentially small outgoing flux. The finite tangent momentum destroys the interference due to formation of caustics by the waves. As a result, a significant fraction of the prebarrier density is carried away from the barrier providing a not exponentially small penetration even through an almost classical barrier. The total electron energy is well below the barrier.  相似文献   
106.
107.
108.
109.
The influence of negative ions on the state of an rf gas-discharge dusty (complex) plasma containing electronegative gaseous impurities was investigated. A simple one-dimensional argon-discharge model allowing for the impurity-induced plasmachemical reactions was taken as an example to show that the addition of even a minor amount of molecular oxygen changes appreciably the plasma composition and plasma transport properties, as well as the microparticle charges. In turn, these changes have a strong effect on the microparticle force balance and on the formation of various dusty structures in the discharge.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号