首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   637篇
  免费   18篇
  国内免费   6篇
化学   357篇
力学   57篇
数学   113篇
物理学   134篇
  2023年   5篇
  2022年   14篇
  2021年   22篇
  2020年   17篇
  2019年   17篇
  2018年   12篇
  2017年   10篇
  2016年   33篇
  2015年   20篇
  2014年   16篇
  2013年   34篇
  2012年   41篇
  2011年   48篇
  2010年   23篇
  2009年   21篇
  2008年   43篇
  2007年   22篇
  2006年   32篇
  2005年   22篇
  2004年   27篇
  2003年   15篇
  2002年   11篇
  2001年   12篇
  2000年   8篇
  1999年   7篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   7篇
  1994年   6篇
  1993年   5篇
  1991年   5篇
  1990年   9篇
  1988年   4篇
  1987年   6篇
  1985年   4篇
  1984年   3篇
  1983年   5篇
  1981年   5篇
  1980年   4篇
  1978年   5篇
  1977年   4篇
  1976年   4篇
  1975年   5篇
  1974年   4篇
  1973年   7篇
  1971年   3篇
  1967年   2篇
  1966年   2篇
  1958年   3篇
排序方式: 共有661条查询结果,搜索用时 15 毫秒
31.
The metal‐directed supramolecular synthetic approach has paved the way for the development of functional nanosized molecules. In this work, we report the preparation of the new nanocapsule 3? (CF3SO3)8 with a A4B2 tetragonal prismatic geometry, where A corresponds to the dipalladium hexaazamacrocyclic complex Pd‐1 , and B corresponds to the tetraanionic form of palladium 5,10,15,20‐tetrakis(4‐carboxyphenyl)porphyrin ( 2 ). The large void space of the inner cavity and the supramolecular affinity for guest molecules towards porphyrin‐based hosts converts this nanoscale molecular 3D structure into a good candidate for host–guest chemistry. The interaction between this nanocage and different guest molecules has been studied by means of NMR, UV/Vis, ESI‐MS, and DOSY experiments, from which highly selective molecular recognition has been found for anionic, planar‐shaped π guests with association constants (Ka) higher than 109 M ?1, in front of non‐interacting aromatic neutral or cationic substrates. DFT theoretical calculations provided insights to further understand this strong interaction. Nanocage 3? (CF3SO3)8 can not only strongly host one single molecule of M(dithiolene)2 complexes (M=Au, Pt, Pd, and Ni), but also can finely tune their optical and redox properties. The very simple synthesis of both the supramolecular cage and the building blocks represents a step forward for the development of polyfunctional supramolecular nanovessels, which offer multiple applications as sensors or nanoreactors.  相似文献   
32.
Biomolecules such as serum proteins can interact with drugs in the body and influence their pharmaceutical effects. Specific and precise methods that analyze these interactions are critical for drug development or monitoring and for diagnostic purposes. Affinity capillary electrophoresis (ACE) is one technique that can be used to examine the binding between drugs and serum proteins, or other agents found in serum or blood. This article will review the basic principles of ACE, along with related affinity-based capillary electrophoresis (CE) methods, and examine recent developments that have occurred in this field as related to the characterization of drug–protein interactions. An overview will be given of the various formats that can be used in ACE and CE for such work, including the relative advantages or weaknesses of each approach. Various applications of ACE and affinity-based CE methods for the analysis of drug interactions with serum proteins and other binding agents will also be presented. Applications of ACE and related techniques that will be discussed include drug interaction studies with serum agents, chiral drug separations employing serum proteins, and the use of CE in hybrid methods to characterize drug binding with serum proteins.  相似文献   
33.
Antibody-based therapeutic agents and other biopharmaceuticals are now used in the treatment of many diseases. However, when these biopharmaceuticals are administrated to patients, an immune reaction may occur that can reduce the drug's efficacy and lead to adverse side-effects. The immunogenicity of biopharmaceuticals can be evaluated by detecting and measuring antibodies that have been produced against these drugs, or antidrug antibodies. Methods for antidrug antibody detection and analysis can be important during the selection of a therapeutic approach based on such drugs and is crucial when developing and testing new biopharmaceuticals. This review examines approaches that have been used for antidrug antibody detection, measurement, and characterization. Many of these approaches are based on immunoassays and antigen binding tests, including homogeneous mobility shift assays. Other techniques that have been used for the analysis of antidrug antibodies are capillary electrophoresis, reporter gene assays, surface plasmon resonance spectroscopy, and liquid chromatography-mass spectrometry. The general principles of each approach will be discussed, along with their recent applications with regards to antidrug antibody analysis.  相似文献   
34.
Freund I  Egorov RI  Soskin MS 《Optics letters》2007,32(15):2182-2184
Umbilic points--singular points of curvature characterized by a fractional topological charge q=+/-1/2--are the most numerous of all special points in the landscape of random optical fields (speckle patterns), outnumbering maxima, minima, saddle points, and optical vortices. To the best of our knowledge, we present the first experimental evidence that positive and negative umbilic points screen one another. Theory predicts that in the absence of screening the charge variance in a bounded region is proportional to the area of the region, whereas in the presence of screening the variance is drastically reduced and is proportional to the perimeter. Our data confirm this latter prediction and provide the first estimates of the screening lengths for umbilic points of the intensity and of the amplitude (field modulus).  相似文献   
35.
Electrical properties of multi-walled carbon nanotubes (MWNTs)/hybrid-glass nanocomposites prepared by the fast-sol–gel reaction were investigated in light of percolation theory. A good correlation was found between the experimental results and the theory. We obtained a percolation threshold ? c  = 0.22 wt%, and a critical exponent of t = 1.73. These values are reported for the first time for a silica-based system. The highest conductivity measured on the MWNT/hybrid-glass nanocomposites was σ ≈ 10?3(Ω cm)?1 for 2 wt% carbon nanotube (CNT) loading. The electrical conductivity was at least 12 orders of magnitude higher than that of pure silica. Electrostatic force microscopy and conductive-mode atomic force microscopy studies demonstrated conductivity at the micro-level, which was attributed to the CNT dispersed in the matrix. It appears that the dispersion in our MWNT/hybrid-glass system yields a particularly low percolation threshold compared with that of a MWNT/silica-glass system. Materials with electrical conductivities described in this work can be exploited for anti-static coating.  相似文献   
36.
37.
The discovery of molecular ionic cocrystals (ICCs) of active pharmaceutical ingredients (APIs) widens the opportunities for optimizing the physicochemical properties of APIs whilst facilitating the delivery of multiple therapeutic agents. However, ICCs are often observed serendipitously in crystallization screens and the factors dictating their crystallization are poorly understood. We demonstrate here that mechanochemical ball milling is a versatile technique for the reproducible synthesis of ternary molecular ICCs in less than 30 min of grinding with or without solvent. Computational crystal structure prediction (CSP) calculations have been performed on ternary molecular ICCs for the first time and the observed crystal structures of all the ICCs were correctly predicted. Periodic dispersion-corrected DFT calculations revealed that all the ICCs are thermodynamically stable (mean stabilization energy=−2 kJ mol−1) relative to the crystallization of a physical mixture of the binary salt and acid. The results suggest that a combined mechanosynthesis and CSP approach could be used to target the synthesis of higher-order molecular ICCs with functional properties.  相似文献   
38.
A series of diaminobenzo[f]- and diaminobenzo[h]pyrimido[4,5-b]quinolines 1–11 were designed as 5-deaza tetracyclic nonclassical, lipophilic antifolates. The compounds were designed as conformationally semi-rigid and rigid analogs of 2,4-diamino-6-phenyl- 12 and 2,4-diamino-7-phenylpyrido[2,3-d]pyrimidines 13 and 14 . The target compounds were synthesized by cyclocondensation of chlorovinyl aldehydes obtained from appropriately substituted 1- or 2-tetralone, with 2,4,6-friaminopyrimidine. Compounds 1–11 were evaluated as inhibitors of P. carinii and T. gondii dihydrofolate reductases. These pathogens cause fatal opportunistic infections in AIDS patients. In addition, the selectivity of these agents was evaluated using rat liver dihydrofolate reductase as the mammalian source. In general the benzo[f]pyrimido[4,5-b]quinolines 1–5 were more potent than the corresponding benzo[h]pyrimido[4,5-b]quinoline analogues 6–11 against P. carinii and rat liver dihydrofolate reductase and were equipotent against T. gondii dihydrofolate reductase. Compounds 6–11 were moderately selective towards T. gondii dihydrofolate reductase with IC50S in the 10−7 M range. In contrast analogues 1–5 lacked selectivity against P. carinii or T. gondii dihydrofolate reductase and were, in general, potent inhibitors of rat liver dihydrofolate reductase with IC50S in the 10−8 M range. Analogues 1 and 4 were evaluated against a series of tumor cell lines in vitro and were found to have moderate antitumor activity (IC50 10−6 M). The structure activity/selectivity relationships suggest that benzo[f]pyrimido analogues 1–5 with the phenyl ring substitution in the “upper” portion of the tetracyclic ring are better accommodated within the rat liver (mammalian) dihydrofolate reductase and P. carinii dihydrofolate reductase active sites compared to the benzo[h]pyrimido analogues 6–11 which have the phenyl ring substitution in the “lower” portion of the tetracyclic ring. In contrast T. gondii dihydrofolate reductase does not discriminate between the isomers and binds to both series of compounds with similar affinities.  相似文献   
39.
The mesocyclic trithioethers, 1,4,7-trithiacyclodecane, 1,4,7-trithiacycloundecane, 1,4,8-trithiacycloundecane, and 1,5,9-trithiacyclododecane; the mesocyclic trithioether ketones, 1,4,7-trithiacyclodecan-9-one; 1,4,8-trithiacycloundecan-6-one, and 1,5,9-trithiacyclododecan-3-one; and the mesocyclic trithioether alcohols, 1,4,7-trithiacyclodecan-9-ol, 1,4,8-trithiacycloundecan-6-ol, and 1,5,9-trithiacyclododecan-3-ol, have been synthesized using the cesium dithiolate technique. In some cases, the corresponding macrocyclic hexathioether was isolated from the reaction mixture in addition to the mesocyclic trithioether; 1,4,7,11,14,17-hexathiacycloeicosane, 1,4,7,11,14,17-hexathiacycloeicosan-9,19-dione, 1,4,7,12,15,18-hexathiacyclodocosane, and 1,5,9,13,17,21-hexathiacyclotetracosane. Single-crystal X-ray structures have been determined for 1,5,9-trithiacyclododecan-3-ol and 1,4,7,12,15,18-hexathiacyclodocosane. For 1,5,9-trithiacyclododecane-3-ol, the compound crystallizes in the monoclinic space group, C2/c, with a = 10.5926( 9 ) Å, b = 15.582(2) Å, c = 13.6015(8) Å, β = 98.186(6)0, Z = 8, and R = 0.038. The macrocycle, 1,4,7,12,15,18-hexathiacyclodocosane, crystallizes in the orthorhombic space group, Pbca, with a = 21.406(5) Å, b = 9.810(2) Å, c = 10.225(2) Å, Z = 4, and R = 0.020.  相似文献   
40.
Several important clinical conditions can result in close association between the pigment melanin and dermal collagen. Because melanin and its precursors can be chemically reactive in ground and excited states, it is important to know whether the resulting melanin-collagen interaction results in photoprotection or photoaggression. Acidic and neutral air-saturated collagen suspensions (0.033%) were irradiated with0–2.6 times 104 J/m2 UVC or with0–83 times 104 J/m2 solar-simulating UV radiation (SSR). Photochemical destruction of a photolabile collagen fluorophore (δem 360 nm) and collagen chain degradation were monitored as functions of irradiation time in the presence and absence of added (0–100μg) sepia eumelanin. Melanin retarded collagen photodamage but did not qualitatively alter the fluorescence fading kinetics. Both H202 and 02 can be produced by UV irradiation of eumelanin. Added H202 and K02 destroyed collagen fluorescence and caused 50% chain degradation at ca10–20-fold molar excess. Previous studies have demonstrated that eumelanins efficiently scavenge 02 . We demonstrated that eumelanin also efficiently scavenges H202 as evidenced by its ability to (a) compete with scopoletin for peroxide uptake and (b) directly take up H202 through a dialysis bag. The latter observation suggests that peroxide scavenging could occur in vivo by melanin sequestered in melanophages. Thus, neither UV-generated 02 nor H202 are likely to be present in concentrations high enough to cause measurable collagen damage. Absorption and/or scattering of excitation radiation away from the target chromophore appears to be the primary photoprotection mechanism, although scavenging of active 02 intermediates may play an important, if subtle role.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号