首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1286篇
  免费   60篇
  国内免费   2篇
化学   927篇
晶体学   44篇
力学   50篇
数学   127篇
物理学   200篇
  2023年   10篇
  2022年   11篇
  2021年   14篇
  2020年   24篇
  2019年   25篇
  2018年   21篇
  2017年   17篇
  2016年   33篇
  2015年   35篇
  2014年   42篇
  2013年   74篇
  2012年   72篇
  2011年   76篇
  2010年   52篇
  2009年   58篇
  2008年   92篇
  2007年   79篇
  2006年   86篇
  2005年   57篇
  2004年   60篇
  2003年   52篇
  2002年   67篇
  2001年   28篇
  2000年   23篇
  1999年   16篇
  1998年   7篇
  1997年   13篇
  1996年   15篇
  1995年   13篇
  1994年   15篇
  1993年   13篇
  1992年   4篇
  1991年   11篇
  1989年   9篇
  1988年   10篇
  1987年   11篇
  1986年   5篇
  1985年   7篇
  1984年   7篇
  1983年   5篇
  1982年   11篇
  1981年   6篇
  1980年   8篇
  1979年   8篇
  1978年   4篇
  1977年   5篇
  1974年   4篇
  1973年   5篇
  1972年   4篇
  1969年   5篇
排序方式: 共有1348条查询结果,搜索用时 15 毫秒
41.
Structures of Bis(trifluoromethyl)halogeno and thiocyanato Mercurates, [Hg(CF3)2X] (X = Br, I, SCN), and a Comparison of the Structural Parameters of the CF3 Groups [(18‐C‐6)K]2[Hg(CF3)2SCN]2 (1) and [P(CH3)(C6H5)3]2[Hg(CF3)2X]2 (X = Br (2) , I (3) ) are prepared and their crystal structures are determined. [(18‐C‐6)K]2[Hg(CF3)2SCN]2 (1) crystallizes in the monoclinic space group P21/c with Z = 2, [P(CH3)(C6H5)3]2[Hg(CF3)2Br]2 (2) in the monoclinic space group P21/n with Z = 2 and [P(CH3)(C6H5)3]2[Hg(CF3)2I]2 (3) in the triclinic space group P1¯ with Z = 1. In the solid state the three compounds form dimeric anions with planar Hg2X2 rings. The structural parameters of the Hg(CF3)2 units in the till now known bis(trifluoromethyl)halogeno mercurates are compared. In all compounds one nearly symmetric and one distorted CF3 group exist. The largest differences of the C—F bond lengths is found for [(18‐C‐6)K][Hg(CF3)2I]. This can be regarded as the experimental evidence for the properties of trifluoromethyl mercury compounds to act as excellent difluorocarbene sources in the presence of alkali iodides.  相似文献   
42.
An increasing number of docking/scoring programs are available that use different sampling and scoring algorithms. A reliable scoring function is the crucial element of such approaches. Comparative studies are needed to evaluate their current capabilities. DOCK4 with force field and PMF scoring as well as FlexX were used to evaluate the predictive power of these docking/scoring approaches to identify the correct binding mode of 61 MMP-3 inhibitors in a crystal structure of stromelysin and also to rank them according to their different binding affinities. It was found that DOCK4/PMF scoring performs significantly better than FlexX and DOCK4/FF in both ranking ligands and predicting their binding modes. Most notably, DOCK4/PMF was the only scoring/docking approach that found a significant correlation between binding affinity and predicted score of the docked inhibitors. However, comparing only those cases where the correct binding mode was identified (scoring highest among sampled poses), FlexX showed the best `fine tuning' (lowest rmsd) in predicted binding modes. The results suggest that not so much the sampling procedure but rather the scoring function is the crucial element of a docking program.  相似文献   
43.
Work function spectroscopy (WFS) in a microprobe mode (scanning work function microscopy SWFM), or in conjunction with sputter depth profiling constitutes a useful supplementary method to other surface analytical techniques. The so-called onset technique of WFS utilizes the influence of the electronic work function of the sample on the onset of the energy distribution of the true secondary electrons. This technique can readily be incorporated into existing surface analytical instruments like Scanning Auger microprobes. WFS and Auger electron spectroscopy (AES) have been applied in-situ during sputter depth profiling of sulphur layers segregated on top of Cu(111), and of implantation profiles of Cs+ bombarded Si(111) with Ar+ ions of 1 keV. Because the onset technique for WFS takes advantage of the high intensity of the true secondary electrons, it is possible to use very low primary electron currents Ip. Employing a commercial instrument (PHI SAM 660) with a minimum spot size of 20 nm a lateral resolution of about 25 nm is achieved in the SWFM mode.  相似文献   
44.
Utilizing the “ideal” ionic liquid salt bridge to measure Gibbs energies of transfer of silver ions between the solvents water, acetonitrile, propylene carbonate and dimethylformamide results in a consistent data set with a precision of 0.6 kJ mol−1 over 87 measurements in 10 half-cells. This forms the basis for a coherent experimental thermodynamic framework of ion solvation chemistry. In addition, we define the solvent independent - and the values that account for the electronating potential of any redox system similar to the value of a medium that accounts for its protonating potential. This scale is thermodynamically well-defined enabling a straightforward comparison of the redox potentials (reducities) of all media with respect to the aqueous redox potential scale, hence unifying all conventional solvents′ redox potential scales. Thus, using the Gibbs energy of transfer of the silver ion published herein, one can convert and unify all hitherto published redox potentials measured, for example, against ferrocene, to the scale.  相似文献   
45.
The crystal structures of molecular complexes betweenmeso- 1,2-diphenyl-1,2-ethanediol and two bisimines (N,N-(dibenzylidene)-ethylenediamine and glyoxylidene-bis(2,4-dimethyl-3-pentyl-amine) are reported at different temperatures. The structure-determining motif of the cocrystalline arrangement is one single O-H . N hydrogen bond resulting in infinite ladderlike polymers. The supramolecular structure is formed by recognition of fitting species: Thed- orl-isomers do not arrange in such structures.1H NMR experiments show that no prearrangements take place by forming complexes in solution.  相似文献   
46.
The ligands 4-7-H(2) were used in coordination studies with titanium(IV) and gallium(III) ions to obtain dimeric complexes Li(4)[(4-7)(6)Ti(2)] and Li(6)[(4/5a)(6)Ga(2)]. The X-ray crystal structures of Li(4)[(4)(6)Ti(2)], Li(4)[(5b)(6)Ti(2)], and Li(4)[(7a)(6)Ti(2)] could be obtained. While these complexes are triply lithium-bridged dimers in the solid state, a monomer/dimer equilibrium is observed in solution by NMR spectroscopy and ESI FT-ICR MS. The stability of the dimer is enhanced by high negative charges (Ti(IV) versus Ga(III)) of the monomers, when the carbonyl units are good donors (aldehydes versus ketones and esters), when the solvent does not efficiently solvate the bridging lithium ions (DMSO versus acetone), and when sterical hindrance is minimized (methyl versus primary and secondary carbon substituents). The dimer is thermodynamically favored by enthalpy as well as entropy. ESI FT-ICR mass spectrometry provides detailed insight into the mechanisms with which monomeric triscatecholate complexes as well as single catechol ligands exchange in the dimers. Tandem mass spectrometric experiments in the gas phase show the dimers to decompose either in a symmetric (Ti) or in an unsymmetric (Ga) fashion when collisionally activated. The differences between the Ti and Ga complexes can be attributed to different electronic properties and a charge-controlled reactivity of the ions in the gas phase. The complexes represent an excellent example for hierarchical self-assembly, in which two different noncovalent interactions of well balanced strengths bring together eleven individual components into one well-defined aggregate.  相似文献   
47.
Summary.  Hydrido substituted stannasilanes of the type or (Z = H, Me, Ph; R, R′ = alkyl, Ph) are accessible by reaction of either alkali metal stannides (MSn(Z)R 2; M = Li, Na) with halogen substituted silanes (; X = F, Cl) or chlorostannanes (R 2SnCl2, Ph3SnCl) and fluorosilanes in the presence of magnesium. Stannasilanes with halogen substituents at the silicon as well as the tin atom are formed by treatment of the hydrido substituted stannasilanes with CHCl3 or CCl4. The hydrido substituted stannasilanes decompose in contact with air to distannanes and siloxanes or to the linear ( t Bu2Sn(–O– t Bu2Si–OH)2) and cyclic ((– t Bu2Sn–O– i Pr2Si–O–)2) stannasiloxanes. Received November 29, 2001. Accepted (revised) January 16, 2002  相似文献   
48.
Rare‐Earth‐Metal Coordination Polymers: Syntheses and Crystal Structures of Three New Glutarates, [Pr2(Glu)3(H2O)4] · 10.5H2O, [Pr(Glu)(H2O)2]Cl, and [Er(Glu)(GluH)(H2O)2] The new rare‐earth dicarboxylates [Pr2(Glu)3(H2O)4] · 10.5H2O ( 1 ), [Pr(Glu)(H2O)2]Cl ( 2 ) and [Er(Glu)(GluH)(H2O)2] ( 3 ) were obtained from the reactions of glutaric acid with PrCl3·6H2O and Er(OH)3, respectively. The crystal structures were determined by single‐crystal X‐ray diffraction. [Pr2(Glu)3(H2O)4] · 10,5H2O crystallizes in the orthorhombic space group Pnma (no. 62) with a = 871.7(4), b = 3105.0(9), c = 1308.3(9) pm and Z = 4. The crystals of [Pr(Glu)(H2O)2]Cl are monoclinic (I2/a; no. 15) with a = 786.2(1), b = 1527.6(2) c = 801.2(1) pm, β = 99.78(1)° and Z = 4. [Er(Glu)(GluH)(H2O)2] crystallizes in the monoclinic space group P21/a (no. 14) with lattice parameters of a = 882.4(1), b = 1375.3(2), c = 1267.4(2) pm, β = 107.13(1)° and Z = 4. The rare‐earth cations have the coordination numbers 10 ( 1 ), 8 + 1 ( 2 ) and 9 ( 3 ). The individual polyhedra are connected to chains and further to sheets in 1 and 2 and to double chains in 3 . Only in the water‐rich compound 1 there are channels that contain crystal water molecules. It, therefore, has a considerably lower density than 2 and 3 .  相似文献   
49.
Upon reacting P(4)S(3) with AgAl(hfip)(4) and AgAl(pftb)(4) [hfip = OC(H)(CF(3))(2); pftb = OC(CF(3))(3)], the compounds Ag(P(4)S(3))Al(hfip)(4) 1 and Ag(P(4)S(3))(2)(+)[Al(pftb)(4)](-) 2 formed in CS(2) (1) or CS(2)/CH(2)Cl(2) (2) solution. Compounds 1 and 2 were characterized by single-crystal X-ray structure determinations, Raman and solution NMR spectroscopy, and elemental analyses. One-dimensional chains of [Ag(P(4)S(3))(x)](infinity) (x = 1, 1; x = 2, 2) formed in the solid state with P(4)S(3) ligands that bridge through a 1,3-P,S, a 2,4-P,S, or a 3,4-P,P eta(1) coordination to the silver ions. Compound 2 with the least basic anion contains the first homoleptic metal(P(4)S(3)) complex. Compounds 1 and 2 also include the long sought sulfur coordination of P(4)S(3). Raman spectra of 1 and 2 were assigned on the basis of DFT calculations of related species. The influence of the silver coordination on the geometry of the P(4)S(3) cage is discussed, additionally aided by DFT calculations. Consequences for the frequently observed degradation of the cage are suggested. An experimental silver ion affinity scale based on the solid-state structures of several weak Lewis acid base adducts of type (L)AgAl(hfip)(4) is given. The affinity of the ligand L to the silver ion increases according to P(4) < CH(2)Cl(2) < P(4)S(3) < S(8) < 1,2-C(2)H(4)Cl(2) < toluene.  相似文献   
50.
The unexpected but facile preparation of the silver salt of the least coordinating [(RO)3Al‐F‐Al(OR)3]? anion (R=C(CF3)3) by reaction of Ag[Al(OR)4] with one equivalent of PCl3 is described. The mechanism of the formation of Ag[(RO)3Al‐F‐Al(OR)3] is explained based on the available experimental data as well as on quantum chemical calculations with the inclusion of entropy and COSMO solvation enthalpies. The crystal structures of (RO)3Al←OC4H8, Cs+[(RO)2(Me)Al‐F‐Al(Me)(OR)2]?, Ag(CH2Cl2)3+[(RO)3Al‐F‐Al(OR)3]? and Ag(η2‐P4)2+[(RO)3Al‐F‐Al(OR)3]? are described. From the collected data it will be shown that the [(RO)3Al‐F‐Al(OR)3]? anion is the least coordinating anion currently known. With respect to the fluoride ion affinity of two parent Lewis acids Al(OR)3 of 685 kJ mol?1, the ligand affinity (441 kJ mol?1), the proton and copper decomposition reactions (?983 and ?297 kJ mol?1) as well as HOMO level and HOMO–LUMO gap and in comparison with [Sb4F21]?, [Sb(OTeF5)6]?, [Al(OR)4]? as well as [B(RF)4]? (RF=CF3 or C6F5) the [(RO)3Al‐F‐Al(OR)3]? anion is among the best weakly coordinating anions (WCAs) according to each value. In contrast to most of the other cited anions, the [(RO)3Al‐F‐Al(OR)3] anion is available by a simple preparation in conventional inorganic laboratories. The least coordinating character of this anion was employed to clarify the question of the ground state geometry of the Ag(η2‐P4)2+ cation (D2h, D2 or D2d?). In agreement with computational data and NMR spectra it could be shown that the rotation along the Ag‐(P‐P‐centroid) vector has no barrier and that the structure adopted in the solid state depends on packing effects which lead to an almost D2h symmetric Ag(η2‐P4)2+ cation (0 to 10.6° torsion) for the more symmetrical [Al(OR)4]? anion, but to a D2 symmetric Ag(η2‐P4)2+ cation with a 44° twist angle of the two AgP2 planes for the less symmetrical [(RO)3Al‐F‐Al(OR)3]? anion. This implies that silver back bonding, suggested by quantum chemical population analyses to be of importance, is only weak.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号