首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1044篇
  免费   8篇
化学   797篇
晶体学   4篇
力学   4篇
数学   35篇
物理学   212篇
  2022年   12篇
  2021年   8篇
  2020年   6篇
  2018年   8篇
  2017年   10篇
  2016年   5篇
  2015年   5篇
  2014年   7篇
  2013年   32篇
  2012年   27篇
  2011年   45篇
  2010年   26篇
  2009年   30篇
  2008年   54篇
  2007年   49篇
  2006年   42篇
  2005年   43篇
  2004年   44篇
  2003年   34篇
  2002年   35篇
  2001年   20篇
  2000年   25篇
  1999年   17篇
  1998年   15篇
  1997年   19篇
  1996年   9篇
  1995年   11篇
  1994年   15篇
  1993年   20篇
  1992年   23篇
  1991年   25篇
  1990年   27篇
  1989年   26篇
  1988年   26篇
  1987年   13篇
  1986年   12篇
  1985年   25篇
  1984年   21篇
  1983年   13篇
  1982年   21篇
  1981年   15篇
  1980年   9篇
  1979年   21篇
  1978年   11篇
  1977年   13篇
  1976年   16篇
  1975年   13篇
  1973年   6篇
  1972年   5篇
  1968年   6篇
排序方式: 共有1052条查询结果,搜索用时 15 毫秒
161.
We have developed the advanced nitric acid oxidation of Si (NAOS) method to form relatively thick (5-10 nm) SiO2/Si structure with good electrical characteristics. This method simply involves immersion of Si in 68 wt% nitric acid aqueous solutions at 120 °C with polysilazane films. Fourier transform infrared absorption (FT-IR) measurements show that the atomic density of the NAOS SiO2 layer is considerably high even without post-oxidation anneal (POA), i.e., 2.28 × 1022 atoms/cm2, and it increases by POA at 400 °C in wet-oxygen (2.32 × 1022 atoms/cm2) or dry-oxygen (2.30 × 1022 atoms/cm2). The leakage current density is considerably low (e.g., 10−5 A/cm2 at 8 MV/cm) and it is greatly decreased (10−8 A/cm2 at 8 MV/cm) by POA at 400 °C in wet-oxygen. POA in wet-oxygen increases the atomic density of the SiO2 layer, and decreases the density of oxide fixed positive charges.  相似文献   
162.
The fragmentation of peptides and oligosaccharides in the gas phase was investigated by means of electrospray ionization Fourier transform ion cyclotron resonance (FTICR) mass spectrometry coupled with dissociation by a laser-cleavage infrared multiphoton dissociation (IRMPD) technique. In this technique, an IR free-electron laser is used as a tunable source of IR radiation to cause cleavage of the ionized samples introduced into the FTICR cell. The gas-phase IRMPD spectra of protonated peptides (substance P and angiotensin II) and two sodiated oligosaccharides (sialyl Lewis X and lacto-N-fucopentaose III) were obtained over the IR scan range of 5.7-9.5 microm. In the IRMPD spectra for the peptide, fragment ions are observed as y/b-type fragment ions in the range 5.7-7.5 microm, corresponding to cleavage of the backbone of the parent amino acid sequence, whereas the spectra of the oligosaccharides have major peaks in the range 8.4-9.5 microm, corresponding to photoproducts of the B/Y type.  相似文献   
163.
We are planning to perform an experiment at J-PARC and produce new neutron-rich Λ hypernuclei by using the (π ?, K +) reaction (J-PARC E10). As the first step, we are planning to produce ${^6_{\Lambda}{\rm H}}$ hypernuclei with a 6Li target. To conduct this experiment, we are developing new detectors, those are scintillating fiber tracker, and silicon strip detector, for high rate operation to aim at increasing beam intensity up to 107/spill. As a result of beam test in Jun 2012, we are going to use high-rate beam at least 107/spill.  相似文献   
164.
We report the adhesion of binary giant vesicles composed of two types of phospholipids, one has negative spontaneous curvature which tends to bend toward the head group and the other has zero spontaneous curvature. In a homogeneous one-phase region, the giant vesicles do not adhere to each other, whereas in a coexisting two-phase region, the giant vesicles show adhesion. A fluorescence microscope observation reveals that the adhesion takes place through the domains rich in phospholipids having negative spontaneous curvature. We propose a phase separation induced hemifusion model where two apposed monolayers of adjacent vesicles are hemifused in order to reduce the bending energy of monolayers with negative spontaneous curvature and the boundary energy between the domains and matrix. We provide a strong evidence for the hemifusion model by lipid transfer experiments.  相似文献   
165.
We designed and synthesized a new type of small helical molecule exhibiting intense circularly polarized luminescence (CPL) ( 12H ) by modifying a 20π-electron hemiporphyrazine with a large transition magnetic dipole moment. The hemiporphyrazine ring was opened and one additional pyridine unit was introduced, resulting in an overlap of two pyridine rings. X-ray structure analysis confirmed that 12H and its zinc complex ( 1Zn ) adopt a helical geometry. A racemic mixture of 1Zn was resolved into two enantiomers ((P)- and (M)- 1Zn ), which exhibited CPL with a high luminescence dissymmetry factor (glum) value of ±2.1×10−2. The origin of the large glum value was rationalized by means of DFT calculations. Helical structures could be formed in a diastereoselective manner by covalently attaching chiral units to the skeleton ( 1’2H and 1’Zn ). 1Zn was found to possess chiral recognition ability for amines.  相似文献   
166.
The potential use of circularly polarized luminescence for object identification in a sensor application is demonstrated. New luminescence probes using pyrene derivatives as sensor luminophores were developed. (R,R)‐Im2Py and (S,S)‐Im2Py contain two chiral imidazole moieties at 1,6‐positions through ethynyl spacers (angle between spacers ca. 180°). The probe molecules spontaneously self‐assemble into chiral stacks (P or M helicity) upon coordination to metal ions with tetrahedral coordination (Zn2+). The chiral probes display neither circular dichroism (CD) nor circularly polarized luminescence (CPL) without metal ions. However, (R,R)‐Im2Py and (S,S)‐Im2Py exhibit intense chiroptical activity (CD and CPL) upon self‐assembly with Zn2+ ions. (R,R)‐Im2Py and (S,S)‐Im2Py with chemical stimuli‐responsibility allow sensing using the CPL signal as detection output, enabling us to discriminate between a signal from the target analyte and that from non‐target species.  相似文献   
167.
A solid‐state fluorescent host system was created by self‐assembly of a 21‐helical columnar organic fluorophore composed of (1R,2S)‐2‐amino‐1,2‐diphenylethanol and fluorescent 1‐pyrenecarboxylic acid. This host system has a characteristic 21‐helical columnar hydrogen‐ and ionic‐bonded network. Channel‐like cavities are formed by self‐assembly of this column, and various guest molecules can be included by tuning the packing of this column. Moreover, the solid‐state fluorescence of this host system can change according to the included guest molecules. This occurs because of the change in the relative arrangement of the pyrene rings as they adjust to the tuning of the packing of the shared 21‐helical column, according to the size of the included guest molecules. Therefore, this host system can recognize slight differences in molecular size and shape.  相似文献   
168.
A solution of NaOH dissolved in ethylene glycol (EG) was effective in the dechlorination of poly(vinyl chloride) (PVC) at atmospheric pressure. The degree of dechlorination increased with increasing temperature, reaching a maximum of 97.8% at 190 °C. The dechlorination proceeded under chemical control and exhibited first-order kinetics with an apparent activation energy of 170 kJ mol−1. The apparent rate constant for dechlorination in 1.0 M NaOH/EG was approximately 150 times greater than that in 1.0 M NaOH/H2O. In addition, dechlorination was faster at atmospheric pressure in NaOH/EG than under high pressure in NaOH/H2O. The dechlorination reaction occurs via a combination of E2 and SN2 mechanisms.  相似文献   
169.
N-acetyl-L-aspartic acid (NAA) is an endogenous compound, and its brain concentration is suggested to be altered in neurological disorders. In the present study, a fluorescence determination method for NAA was developed by employing reversed-phase high-performance liquid chromatography (HPLC) with pre-column fluorescence derivatization using 4-N,N-dimethylaminosulfonyl-7-N-(2-aminoethyl)amino-2,1,3-benzoxadiazole (DBD-ED). Using methylsuccinic acid as the internal standard, a linear calibration curve for NAA was constructed in the range 125-1000 microM (n=3). The detection limit on the column was approximately 5.0 fmol (signal-to-noise ratio 3). The proposed HPLC method was applied to determine NAA in the rat cerebrum homogenate. Cerebrum NAA was successfully determined using 10 microL of the homogenate, and the validation data for the proposed HPLC method demonstrated satisfactory results. Intra- and inter-day precision and accuracy were within 1.1-7.0 and -8.1-6.3%, respectively. The concentration of NAA in the male rat cerebrum (13 weeks old) was 84+/-4.6 micromol/mg protein (n=3).  相似文献   
170.
A star-shaped Ru/Os tetranuclear complex, in which a central Os unit is linked to three peripheral Ru units by 4,4'-azobis(2,2'-bipyridine) (azobpy) bridging ligands, was prepared to examine the unique photodynamics regulated by its redox state. The Ru/Os tetranuclear complex exhibits Ru-based luminescence at 77 K, whereas the three-electron reduction (one for each azobpy) of the Ru/Os complex results in luminescence from the Os unit. The photoexcited state of the Ru/Os complex rapidly decays into low energy metal-to-ligand charge-transfer states, in which the excited electron is localized in the azobpy ligand in the form of azobpy(.-). Upon the one-electron reduction of the azobpy ligands, the above-mentioned low-energy states become unavailable to the photoexcited complex. As a result, an energy transfer from the Ru-based excited state to the Os-based excited state becomes possible. Ultrafast transient absorption measurements revealed that the energy transfer process consists of two steps; intramolecular electron transfer from the terminal bipyridine ligand (bpy(.-)) to form azobpy(2-) followed by a metal-to-metal electron transfer. Thus, the Ru/Os tetranuclear complex collects light energy into the central Os unit depending on the redox state of the bridging ligands, qualifying as a switchable antenna.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号