首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   927篇
  免费   48篇
  国内免费   10篇
化学   601篇
晶体学   3篇
力学   15篇
数学   177篇
物理学   189篇
  2024年   1篇
  2023年   11篇
  2022年   25篇
  2021年   39篇
  2020年   24篇
  2019年   42篇
  2018年   40篇
  2017年   20篇
  2016年   43篇
  2015年   30篇
  2014年   31篇
  2013年   52篇
  2012年   64篇
  2011年   72篇
  2010年   41篇
  2009年   31篇
  2008年   61篇
  2007年   71篇
  2006年   61篇
  2005年   53篇
  2004年   43篇
  2003年   33篇
  2002年   21篇
  2001年   11篇
  2000年   5篇
  1999年   11篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1995年   8篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有985条查询结果,搜索用时 15 毫秒
121.
Possible shapes of numerical ranges of rank-two operators are studied. In particular it is proved that for 4-by-4 unitarily irreducible matrices with an eigenvalue of geometric multiplicity two, the numerical ranges have at most one flat portion on the boundary and there are no multiply generated round boundary points.  相似文献   
122.
We introduce and study the space ${{\mathcal{S}{\rm Curr} (F_N)}}$ of subset currents on the free group F N , and, more generally, on a word-hyperbolic group. A subset current on F N is a positive F N -invariant locally finite Borel measure on the space ${{\mathfrak{C}_N}}$ of all closed subsets of ?F N consisting of at least two points. The well-studied space Curr(F N ) of geodesics currents–positive F N -invariant locally finite Borel measures defined on pairs of different boundary points–is contained in the space of subset currents as a closed ${{\mathbb{R}}}$ -linear Out(F N )-invariant subspace. Much of the theory of Curr(F N ) naturally extends to the ${{\mathcal{S}\;{\rm Curr} (F_N)}}$ context, but new dynamical, geometric and algebraic features also arise there. While geodesic currents generalize conjugacy classes of nontrivial group elements, a subset current is a measure-theoretic generalization of the conjugacy class of a nontrivial finitely generated subgroup in F N . If a free basis A is fixed in F N , subset currents may be viewed as F N -invariant measures on a “branching” analog of the geodesic flow space for F N , whose elements are infinite subtrees (rather than just geodesic lines) of the Cayley graph of F N with respect to A. Similarly to the case of geodesics currents, there is a continuous Out(F N )-invariant “co-volume form” between the Outer space cv N and the space ${{\mathcal{S}\;{\rm Curr} (F_N)}}$ of subset currents. Given a tree ${{T \in {\rm cv}_N}}$ and the “counting current” ${{\eta_H \in \mathcal{S}\;{\rm Curr} (F_N)}}$ corresponding to a finitely generated nontrivial subgroup H ≤  F N , the value ${{\langle T, \eta_H \rangle}}$ of this intersection form turns out to be equal to the co-volume of H, that is the volume of the metric graph T H /H, where ${{T_H \subseteq T}}$ is the unique minimal H-invariant subtree of T. However, unlike in the case of geodesic currents, the co-volume form ${{{\rm cv}_N \times \mathcal{S}\;{\rm Curr}(F_N)\; \to [0,\infty)}}$ does not extend to a continuous map ${{\overline{{\rm cv}}_N \times \mathcal{S}\; {\rm Curr} (F_N) \to [0,\infty)}}$ .  相似文献   
123.
We extend the recently proposed state-space restriction (SSR) technique for quantum spin dynamics simulations [Kuprov et al., J. Magn. Reson. 189 (2007) 241-250] to include on-the-fly detection and elimination of unpopulated dimensions from the system density matrix. Further improvements in spin dynamics simulation speed, frequently by several orders of magnitude, are demonstrated. The proposed zero track elimination (ZTE) procedure is computationally inexpensive, reversible, numerically stable and easy to add to any existing simulation code. We demonstrate that it belongs to the same family of Krylov subspace techniques as the well-known Lanczos basis pruning procedure. The combined SSR+ZTE algorithm is recommended for simulations of NMR, EPR and Spin Chemistry experiments on systems containing between 10 and 10(4) coupled spins.  相似文献   
124.

Background

Multi-sensory integration is necessary for organisms to discriminate different environmental stimuli and thus determine behavior. Caenorhabditis elegans has 12 pairs of amphid sensory neurons, which are involved in generating behaviors such as thermotaxis toward cultivation temperature, and chemotaxis toward chemical stimuli. This arrangement of known sensory neurons and measurable behavioral output makes C. elegans suitable for addressing questions of multi-sensory integration in the nervous system. Previous studies have suggested that C. elegans can process different chemoattractants simultaneously. However, little is known about how these organisms can integrate information from stimuli of different modality, such as thermal and chemical stimuli.

Results

We studied the behavior of a population of C. elegans during simultaneous presentation of thermal and chemical stimuli. First, we examined thermotaxis within the radial temperature gradient produced by a feedback-controlled thermoregulator. Separately, we examined chemotaxis toward sodium chloride or isoamyl alcohol. Then, assays for simultaneous presentations of 15°C (colder temperature than 20°C room temperature) and chemoattractant were performed with 15°C-cultivated wild-type worms. Unlike the sum of behavioral indices for each separate behavior, simultaneous presentation resulted in a biased migration to cold regions in the first 10 min of the assay, and sodium chloride-regions in the last 40 min. However, when sodium chloride was replaced with isoamyl alcohol in the simultaneous presentation, the behavioral index was very similar to the sum of separate single presentation indices. We then recorded tracks of single worms and analyzed their behavior. For behavior toward sodium chloride, frequencies of forward and backward movements in simultaneous presentation were significantly different from those in single presentation. Also, migration toward 15°C in simultaneous presentation was faster than that in 15°C-single presentation.

Conclusion

We conclude that worms preferred temperature to chemoattractant at first, but preferred the chemoattractant sodium chloride thereafter. This preference was not seen for isoamyl alcohol presentation. We attribute this phase-dependent preference to the result of integration of thermosensory and chemosensory signals received by distinct sensory neurons.  相似文献   
125.
An efficient nickel‐catalyzed asymmetric hydrogenation of NtBu ‐ sulfonyl imines was developed with excellent yields and enantioselectivities using (R,R)‐QuinoxP* as a chiral ligand. The use of a much lower catalyst loading (0.0095 mol %, S/C=10500) represents the highest catalytic activity for the Ni‐catalyzed asymmetric hydrogenations reported so far. Mechanistic studies suggest that a coordination equilibrium exists between the nickel salt and its complex, and that excess nickel salt promotes the formation of the active Ni‐complex, and therefore improved the efficiency of the hydrogenation. The catalytic cycle was also investigated by calculations to determine the origin of the enantioselectivity. An extensive network of numerous weak attractive interactions was found to exist between the catalyst and substrate in the transition state and may also contribute to the high catalytic activity.  相似文献   
126.
In the soft-wet environment of biomolecular electron transfer, it is possible that structural fluctuations could wash out medium-specific electronic effects on electron tunneling rates. We show that beyond a transition distance (2-3 A in water and 6-7 A in proteins), fluctuation contributions to the mean-squared donor-to-acceptor tunneling matrix element are likely to dominate over the average matrix element. Even though fluctuations dominate the tunneling mechanism at larger distances, we find that the protein fold is "remembered" by the electronic coupling, and structure remains a key determinant of electron transfer kinetics.  相似文献   
127.
The temporal spread of modal group arrivals in weakly range-dependent deep ocean environments is considered. It is assumed that the range dependence is sufficiently weak that mode coupling is predominantly local in mode number. The phrase "modal group arrival" is taken here to mean the contribution to a transient wave field corresponding to a fixed mode number. There are three contributions to modal group time spreads which combine approximately in quadrature. These are the reciprocal bandwidth (the minimal pulse width), a deterministic dispersive contribution that is proportional to bandwidth and grows like range r, and a scattering-induced contribution that grows approximately like r(32). The latter two contributions are shown to be proportional to the waveguide invariant beta, a property of the background sound speed profile. The results presented, based mostly on asymptotic theory, are shown to agree well with full-wave numerical wave field simulations and available exact mode theoretical results. Simulations are shown that correspond approximately to conditions during the LOAPEX acoustic propagation experiment.  相似文献   
128.
Finite-element simulations of the performance of the tip intended for use in combined aperture-SNOM and the scanning tunneling microscope (STM)-luminescence microscopy are presented. Tip geometry and the role of the opening in the protective metal coating were addressed. It is shown that the tip shape can affect transmittance for the excitation SNOM mode by nearly two orders of magnitude and the metal coating can enhance collection efficiency for the STM-luminescence mode. Desired tip configuration can be chosen based on the interplay between the improving collection efficiency and the deteriorating spatial resolution with increasing opening size.  相似文献   
129.
130.
Journal of Chemical Crystallography - The crystal structure of decakis(μ-chloro)-tetrakis(1,2,4-triphenylcyclopentadienyl)-hexakis(tetrahydrofuran)-di-potassium-tetra-neodymium(III)...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号