首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   12篇
化学   138篇
晶体学   4篇
力学   3篇
数学   24篇
物理学   13篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   10篇
  2020年   6篇
  2019年   8篇
  2018年   3篇
  2017年   3篇
  2016年   9篇
  2015年   6篇
  2014年   7篇
  2013年   8篇
  2012年   11篇
  2011年   13篇
  2010年   7篇
  2009年   8篇
  2008年   10篇
  2007年   12篇
  2006年   12篇
  2005年   8篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1995年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1971年   1篇
  1961年   1篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
21.
Starting from (3S,4R,1'S)-3-amino-2-oxo-1-[1'-(4-methoxyphenylethyl)]pyrrolidine carboxylic acid (2), the first synthesis of a beta-foldamer containing pyrrolidin-2-one rings is described, whose 12-helix conformation is assigned by NMR analysis and confirmed by molecular dynamics (MD) simulations.  相似文献   
22.
23.
24.
Achieving stability with highly active Ru nanoparticles for electrocatalysis is a major challenge for the oxygen evolution reaction. As improved stability of Ru catalysts has been shown for bulk surfaces with low‐index facets, there is an opportunity to incorporate these stable facets into Ru nanoparticles. Now, a new solution synthesis is presented in which hexagonal close‐packed structured Ru is grown on Au to form nanoparticles with 3D branches. Exposing low‐index facets on these 3D branches creates stable reaction kinetics to achieve high activity and the highest stability observed for Ru nanoparticle oxygen evolution reaction catalysts. These design principles provide a synthetic strategy to achieve stable and active electrocatalysts.  相似文献   
25.
Abstract

In recent years the electro-optic polymers emerged as an important branch of material science. This growth and interest is fundamentally motivated by practical application of these materials in second-order nonlinear optics and in waveguiding configuration. Indeed, these materials marry excellent optical quality of amorphous σ bonded polymers with enhanced first hyperpolarizability of imbedded organic nonlinear optical molecules. Although a big progress was achieved with them, concerning particularly the science, understanding and applications, some problems remain still incompletely solved, particularly the stability of induced polar order by the application of external electric field and the molecule aggregation. In this review paper we recall techniques of thin film fabrication, poling, characterization of NLO properties and discuss more precisely problems of molecule aggregation as well as the temporal decay of polar order. A novel 3D second-order NLO chromophores, namely the [2] paracyclophanes, which may help to limit the aggregation, are proposed. We show, in particular, that this molecule can be poled in doped PMMA thin films. Practical applications of electro-optic polymers are also reviewed and discussed.  相似文献   
26.
The purely chemical synthesis of fluorine is a spectacular reaction which for more than a century had been believed to be impossible. In 1986, it was finally experimentally achieved, but since then this important reaction has not been further studied and its detailed mechanism had been a mystery. The known thermal stability of MnF4 casts serious doubts on the originally proposed hypothesis that MnF4 is thermodynamically unstable and decomposes spontaneously to a lower manganese fluoride and F2. This apparent discrepancy has now been resolved experimentally and by electronic structure calculations. It is shown that the reductive elimination of F2 requires a large excess of SbF5 and occurs in the last reaction step when in the intermediate [SbF6][MnF2][Sb2F11] the addition of one more SbF5 molecule to the [SbF6] anion generates a second tridentate [Sb2F11] anion. The two tridentate [Sb2F11] anions then provide six fluorine bridges to the Mn atom thereby facilitating the reductive elimination of the two fluorine ligands as F2.  相似文献   
27.
To explain drug resistance by computer simulations at the molecular level, we first have to assess the accuracy of theoretical predictions. Herein we report an application of the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) technique to the ranking of binding affinities of the inhibitor saquinavir with the wild type (WT) and three resistant mutants of HIV-1 protease: L90M, G48V, and G48V/L90M. For each ligand-protein complex we report 10 ns of fully unrestrained molecular dynamics (MD) simulations with explicit solvent. We investigate convergence, internal consistency, and model dependency of MM/PBSA ligand binding energies. Converged enthalpy and entropy estimates produce ligand binding affinities within 1.5 kcal/mol of experimental values, with a remarkable level of correlation to the experimentally observed ranking of resistance levels. A detailed analysis of the enthalpic/entropic balance of drug-protease interactions explains resistance in L90M in terms of a higher vibrational entropy than in the WT complex, while G48V disrupts critical hydrogen bonds at the inhibitor's binding site and produces an altered, more unfavorable balance of Coulomb and polar desolvation energies.  相似文献   
28.
ATP, the molecule used by living organisms to supply energy to many different metabolic processes, is synthesized mostly by the ATPase synthase using a proton or sodium gradient generated across a lipid membrane. We present evidence that a modified electrode surface integrating a NiFeSe hydrogenase and a F1F0‐ATPase in a lipid membrane can couple the electrochemical oxidation of H2 to the synthesis of ATP. This electrode‐assisted conversion of H2 gas into ATP could serve to generate this biochemical fuel locally when required in biomedical devices or enzymatic synthesis of valuable products.  相似文献   
29.
30.
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号