Parahydrogen-induced polarization with heterogeneous catalysts (HET-PHIP) has been a subject of extensive research in the last decade since its first observation in 2007. While NMR signal enhancements obtained with such catalysts are currently below those achieved with transition metal complexes in homogeneous hydrogenations in solution, this relatively new field demonstrates major prospects for a broad range of advanced fundamental and practical applications, from providing catalyst-free hyperpolarized fluids for biomedical magnetic resonance imaging (MRI) to exploring mechanisms of industrially important heterogeneous catalytic processes. This review covers the evolution of the heterogeneous catalysts used for PHIP observation, from metal complexes immobilized on solid supports to bulk metals and single-atom catalysts and discusses the general visions for maximizing the obtained NMR signal enhancements using HET-PHIP. Various practical applications of HET-PHIP, both for catalytic studies and for potential production of hyperpolarized contrast agents for MRI, are described. 相似文献
Electrical conductivity and elongation at break of epoxy filled with electroconductive carbon black, graphite or with silver-coated basalt particles or fibres were investigated in this paper. Percolation concentrations were determined to be 14 vol% for epoxy/carbon black composites, 22 vol% for epoxy/graphite composites, 28-29 vol% for both epoxy/silver-coated basalt particles and fibres. The steepest increase in electrical conductivity and the most pronounced decrease in elongation at break occurs at similar filler concentration range for all investigated systems. A good correlation between phenomenological model, introduced in [J. Mater. Sci. Lett. 18 (1998) 1457] and experimental data for all investigated systems was observed. 相似文献
The synthesis of the Boc derivative of a novel member of the cyclopropane-modified proline library, Boc-protected 5-azaspiro[2.4]heptane-6-carboxylic acid, is reported. The synthesis was performed in six steps starting from (2S,4R)-4-hydroxyproline using a modified Simmons-Smith reaction as the key step. The reaction conditions for all the steps were carefully selected to avoid racemization at the chiral centers in the intermediates and the final product. 相似文献
Recent research revealed that tissue spray mass spectrometry enables rapid molecular profiling of biological tissues, which is of great importance for the search of disease biomarkers as well as for online surgery control. However, the payback for the high speed of analysis in tissue spray analysis is the generally lower chemical sensitivity compared with the traditional approach based on the offline chemical extraction and electrospray ionization mass spectrometry detection. In this study, high resolution mass spectrometry analysis of endometrium tissues of different localizations obtained using direct tissue spray mass spectrometry in positive ion mode is compared with the results of electrospray ionization analysis of lipid extracts. Identified features in both cases belong to three lipid classes: phosphatidylcholines, phosphoethanolamines, and sphingomyelins. Lipids coverage is validated by hydrophilic interaction liquid chromatography with mass spectrometry of lipid extracts. Multivariate analysis of data from both methods reveals satisfactory differentiation of eutopic and ectopic endometrium tissues. Overall, our results indicate that the chemical information provided by tissue spray ionization is sufficient to allow differentiation of endometrial tissues by localization with similar reliability but higher speed than in the traditional approach relying on offline extraction.
A nitrogen‐rich compound, ReN8?x N2, was synthesized by a direct reaction between rhenium and nitrogen at high pressure and high temperature in a laser‐heated diamond anvil cell. Single‐crystal X‐ray diffraction revealed that the crystal structure, which is based on the ReN8 framework, has rectangular‐shaped channels that accommodate nitrogen molecules. Thus, despite a very high synthesis pressure, exceeding 100 GPa, ReN8?x N2 is an inclusion compound. The amount of trapped nitrogen (x) depends on the synthesis conditions. The polydiazenediyl chains [?N=N?]∞ that constitute the framework have not been previously observed in any compound. Ab initio calculations on ReN8?x N2 provide strong support for the experimental results and conclusions. 相似文献
Solution-state nitroso monomer-azodioxide equilibria and conformational freedom of several aromatic dinitroso derivatives, differing in the spacer group between the aromatic rings, were studied by one- and two-dimensional variable temperature 1H NMR spectroscopy and by quantum chemical calculations. The proton signals of nitroso monomer-azodioxide mixtures revealed by low-temperature NMR were assigned and validated using B3LYP-D3/6-311+G(2d,p)/SMD level of theory. In almost all cases, a preference towards the formation of only one azodioxy isomer of aromatic dinitroso compounds was found, which was assigned to Z-dimer according to computational data. Nevertheless, the computed small energy difference between the Z- and E-isomer could not account for the extreme preference for Z-dimer formation, indicating an influence of entropic or solvent effects. The formation of shorter oligomers in solution was excluded based on integrated 1H NMR signal intensities. The experimental results indicated an average dimerization Gibbs energy of about ??5 kJ/mol at 223 K and were found to be in very good correlation with dimerization energies obtained by solution-phase optimization.
As the addition of low concentrations of oxygen can favor the initial degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds, this work verified the applicability of the microaerobic technology to enhance BTEX removal in an anaerobic bioreactor supplemented with high and low co-substrate (ethanol) concentrations. Additionally, structural alterations on the bioreactor microbiota were assessed throughout the experiment. The bioreactor was fed with a synthetic BTEX-contaminated water (~ 3 mg L?1 of each compound) and operated at a hydraulic retention time of 48 h. The addition of low concentrations of oxygen (1.0 mL min?1 of atmospheric air at 27 °C and 1 atm) assured high removal efficiencies (> 80%) for all compounds under microaerobic conditions. In fact, the applicability of this technology showed to be viable to enhance BTEX removal from contaminated waters, especially concerning benzene (with a 30% removal increase), which is a very recalcitrant compound under anaerobic conditions. However, high concentrations of ethanol adversely affected BTEX removal, especially benzene, under anaerobic and microaerobic conditions. Finally, although bacterial community richness decreased at low concentrations of ethanol, in general, the bioreactor microbiota could deal with the different operational conditions and preserved its functionality during the whole experiment. 相似文献