首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   4篇
化学   81篇
数学   8篇
物理学   46篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2017年   3篇
  2016年   5篇
  2015年   1篇
  2013年   5篇
  2012年   3篇
  2011年   7篇
  2010年   5篇
  2009年   3篇
  2008年   4篇
  2007年   7篇
  2006年   4篇
  2005年   5篇
  2004年   8篇
  2003年   7篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   6篇
  1995年   4篇
  1994年   7篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
71.
Summary The aim of this paper is to prove the following theorem about characterization of probability distributions in Hilbert spaces:Theorem. — Let x1, x2, …, xn be n (n≥3) independent random variables in the Hilbert spaceH, having their characteristic functionals fk(t) = E[ei(t,x k)], (k=1, 2, …, n): let y1=x1 + xn, y2=x2 + xn, …, yn−1=xn−1 + xn. If the characteristic functional f(t1, t2, …, tn−1) of the random variables (y1, y2, …, yn−1) does not vanish, then the joint distribution of (y1, y2, …, yn−1) determines all the distributions of x1, x2, …, xn up to change of location.  相似文献   
72.
We examined the emission wavelength-dependent anisotropies of the solvent-sensitive fluorophore 4-dimethylamino-4-cyanostilbene (DCS) under conditions of light quenching by polarized time-delayed quenching pulses. Illumination on the long-wavelength side of the emission spectrum with time-delayed light pulses resulted in a progressive decrease in the emission anisotropy as the observation wavelength increased toward the stimulating wavelength. The anisotropy changes of DCS were most wavelength dependent when spectral relaxation occurred during the excited-state lifetime. Light quenching of DCS in a low-viscosity solvent revealed no wavelength-dependent anisotropies. Control measurements using a solvent-insensitive fluorophore did not show any wavelength-dependent anisotropy with light quenching. The data for DCS can be explained by a model which allows wavelength-selective quenching of the long-wavelength emission formed by time-dependent spectral relaxation. These results indicate that polarized light quenching can be used to study systems which display multiple emissions and/or time-dependent spectral shifts.  相似文献   
73.
74.
75.
The use of plastics is steadily increasing in our daily lives, and plastics are the fastest-growing component of the waste stream. Although the efficiency of plastic recycling is increasing, plastics are often seen as a permanent environmental problem because of littering. The introduction of oxobiodegradable polyolefins (OBDs), containing prodegradant additives, is considered to be a way to reduce this problem by enabling the fast degradation of plastics in the environment. The prodegradant additives form radicals that attack the polymer chains, causing chain scissions and generation of low molecular mass oxidation products that can be consumed by microorganisms. There is, however, a concern that the prodegradant additives will present a problem if OBD materials end up in the conventional plastic recycling streams. The present study therefore highlights the impact of mixing OBD materials with conventional polyolefins to evaluate the impact on the remaining service life of the recyclates.The study included the use of two different OBDs, mixed in different proportions (10% and 20%) in a conventional polyethylene. The remaining service life of the mixtures was evaluated by monitoring the reduction in tensile strain after exposure to thermo-oxidative degradation at 70 °C, compared with a pure polyethylene. The impact of stabilizer content in the mixtures was also evaluated together with the effect of mixing partially degraded OBDs into the recyclate.The results show that the incorporation of minor fractions of OBD materials in the existing recycling streams will not create a severe effect on the service life of the recyclates as long as the polymer mixture possesses a reasonable degree of stabilization.  相似文献   
76.
Roughened silver electrodes for use in metal-enhanced fluorescence   总被引:3,自引:0,他引:3  
Roughened silver electrodes are widely used for surface-enhanced Raman scattering (SERS). We tested roughened silver electrodes for metal-enhanced fluorescence. Constant current between two silver electrodes in pure water resulted in the growth of fractal-like structures on the cathode. This electrode was coated with a monolayer of human serum albumin (HSA) protein that had been labeled with a fluorescent dye, indocyanine green (ICG). The fluorescence intensity of ICG-HSA on the roughened electrode increased by approximately 50-fold relative to the unroughened electrode, which was essentially non-fluorescent and increased typically two-fold as compared to the silver anode. No fractal-like structures were observed on the anode. Lifetime measurements showed that at least part of the increased intensity was due to an increased radiative decay rate of ICG. In our opinion, the use of in situ generated roughened silver electrodes will find multifarious applications in analytical chemistry, such as in fluorescence based assays, in an analogous manner to the now widespread use of SERS. To the best of our knowledge this is the first report of roughened silver electrodes for metal-enhanced fluorescence.  相似文献   
77.
Microtransponders (RFID p-Chips) derivatized with silver island film (SIF) have previously seen success as a platform for the quantification of low-abundance biomolecules in nucleic acid based assays and immunoassays. In this study, we further characterized the morphology of the SIF as well as the polymer matrix enveloping it by scanning electron microscopy (SEM). The polymer was a two-layer silane-based matrix engulfing the p-Chip and SIF. Through a series of SEM and confocal fluorescence microscopy experiments, we found the depth of the polymer matrix to be 1–2?μm. The radiative effects of the SIF/polymer layer were assessed by fluorescence lifetime imaging (FLIM) of p-Chips coated with the polymer to which a fluorophore (Alexa Fluor 555) was conjugated. FLIM images showed an 8.7-fold increase in fluorescence intensity and an increased rate of radiative decay, the latter of which is associated with improved photostability and both of which are linked to plasmonic enhancement by the SIF. Plasmonic enhancement was found to extend uniformly across the p-Chip and, interestingly, to a depth of about 1.2?μm. The substantial depth of enhancement suggests that the SIF/polymer layer constitutes a three-dimensional matrix that is accessible to solvent and small molecules such as fluorescent dyes. Finally, we confirmed that no surface-enhanced Raman scattering is seen from the SIF/polymer combination. The analysis provides a possible mechanism by which the SIF/polymer-coated p-Chips allow a highly sensitive immunoassay and, as a result, leads to an improved bioassay platform.  相似文献   
78.
Near infrared (NIR) multi-photon excitation of the NIR-emitting lanthanides neodymium (Nd3+) and ytterbium (Yb3+) sensitized by a fluorescein-linked chelator was demonstrated. Because tissues display minimal absorbance near the excitation wavelength of 800 nm, and because the lanthanides display long decay times, these results suggest the use of Nd3+ and Yb3+ as luminescent probes in tissues with multi-photon excitation.  相似文献   
79.
80.
Time-resolved fluorescence spectroscopy is presently regarded as a research tool in biochemistry, biophysics, and chemical physics. Advances in laser technology, the development of long-wavelength probes, and the use of lifetime-based methods, are resulting in the rapid migration of timeresolved fluorescence to the clinical chemistry lab, the patient's bedside, and even to the doctor's office and home health care. Additionally, time-resolved imaging is now a reality in fluorescence microscopy and will provide chemical imaging of a variety of intracellular analytes and/or cellular phenomena. Future horizons of state-of-the-art spectroscopy are also described. Two photon-induced fluorescence provides an increased information content to time-resolved data. Two photoninduced fluorescence, combined with fluorescence microscopy and time-resolved imaging, promises to provide detailed three-dimensional chemical imaging of cells. Additionally, it has recently been demonstrated that the pulses from modern picosecond lasers can be used to quench and/or modify the excited-state population by stimulated emission since the stimulated photons are directed along the quenching beam and are not observed. The phenomenon of light quenching should allow a new class of multipulse time-resolved fluorescence experiments, in which the excited-state population is modified by additional pulses to provide highly oriented systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号