首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   731篇
  免费   56篇
  国内免费   7篇
化学   446篇
晶体学   16篇
力学   44篇
数学   106篇
物理学   182篇
  2023年   7篇
  2022年   12篇
  2021年   12篇
  2020年   25篇
  2019年   6篇
  2018年   7篇
  2016年   22篇
  2015年   26篇
  2014年   33篇
  2013年   82篇
  2012年   17篇
  2011年   14篇
  2010年   35篇
  2009年   34篇
  2008年   21篇
  2007年   24篇
  2006年   17篇
  2005年   20篇
  2004年   20篇
  2003年   23篇
  2002年   19篇
  2001年   15篇
  2000年   15篇
  1999年   18篇
  1998年   17篇
  1997年   10篇
  1996年   10篇
  1994年   5篇
  1993年   14篇
  1992年   12篇
  1991年   15篇
  1990年   11篇
  1989年   9篇
  1988年   7篇
  1987年   9篇
  1986年   7篇
  1985年   7篇
  1984年   13篇
  1982年   9篇
  1981年   8篇
  1980年   10篇
  1977年   5篇
  1976年   7篇
  1975年   9篇
  1974年   7篇
  1973年   7篇
  1972年   12篇
  1971年   6篇
  1969年   6篇
  1967年   6篇
排序方式: 共有794条查询结果,搜索用时 15 毫秒
51.
The design and application of a fluorescent fiber-optic immunosensor (FFOI) are reported. The FFOI is utilized for the detection of antibody/antigen binding within the near-infrared (NIR) spectral region. The technique is developed through the combined use of fiber-optic, semiconductor laser-excitation, fluorescence detection, NIR dye, and immunochemical techniques. The antibody is immobilized on the FFOI and utilized as a recognition component for trace amounts of specific antigen. The FFOI is constructed to utilize an antibody sandwich technique. The assay involves the immobilization of the capture antibody on the sensing tip of the FFOI followed by the exposure of the immobilized sensing tip to the antigen. The antigen-coated FFOI is then introduced to a second antibody previously labeled with the NIR dye. Typical measurements are performed in about 15 min. A semiconductor laser provides the excitation (780 nm) of the immune complex. The resulting emission is detected by a silicon photodiode detector (820 nm). The intensity of the resulting fluorescence is directly proportional to the concentration of the antigen. The sensitivity of the analysis reaches 10 ng/ml and the response time is 10–15 min.  相似文献   
52.
53.
54.
55.
56.
We theoretically and experimentally study electromagnetic properties of a novel mid-infrared metamaterial: optically thin silicon carbide (SiC) membrane perforated by an array of sub-wavelength holes. Giant absorption and transmission is found using Fourier transformed infrared (FTIR) microscopy and explained by introducing a frequency-dependent effective permittivity εeff(ω) of the perforated film. The value of εeff(ω) is determined by the excitation of two distinct types of hole resonances: delocalized slow surface polaritons (SSPs) whose frequencies are largely determined by the array period, and a localized surface polariton (LSP) corresponding to the resonance of an isolated hole. Only SSPs are shown to modify εeff(ω) strongly enough to cause giant transmission and absorption. Because of the sub-wavelength period of the hole array, anomalous optical properties can be directly traced to surface polaritons, and their interpretation is not obscured by diffractive effects. Giant absorbance of this metamaterial can be utilized in designing highly efficient thermal radiation sources. PACS 41.20.Cv; 42.70.Qs; 71.45.Gm  相似文献   
57.
58.
59.
We investigate when the set of finite products of distinct terms of a sequence 〈x n n=1 in a semigroup (S,⋅) is large in any of several standard notions of largeness. These include piecewise syndetic, central, syndetic, central*, and IP*. In the case of a “nice” sequence in (S,⋅)=(ℕ,+) one has that FS(〈x n n=1) has any or all of the first three properties if and only if {x n+1−∑ t=1 n x t :n∈ℕ} is bounded from above. N. Hindman acknowledges support received from the National Science Foundation via Grant DMS-0554803.  相似文献   
60.
The purpose of this paper is to identify areas in the basic physical sciences where additional research is needed to sustain the extraordinary progress in electronics that has now extended for several decades. Also, it is argued that basic research will provide the foundation for the discovery of new generations of nanoelectronic devices that will continue the experimental rate of reduction in cost per function. Some of the fundamental areas requiring further research are the chemistry and physics of material interfaces, conductivity at small dimensions, deterministic doping effects, and nanomagnetics. Discovery research also is needed in the functional synergy of nanoelectronic materials and non-traditional fabrication methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号