首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85398篇
  免费   1559篇
  国内免费   1575篇
化学   29805篇
晶体学   877篇
力学   7205篇
综合类   104篇
数学   32836篇
物理学   17705篇
  2023年   161篇
  2022年   328篇
  2021年   320篇
  2020年   352篇
  2019年   341篇
  2018年   10666篇
  2017年   10454篇
  2016年   6407篇
  2015年   1192篇
  2014年   742篇
  2013年   903篇
  2012年   4442篇
  2011年   11174篇
  2010年   6079篇
  2009年   6493篇
  2008年   7125篇
  2007年   9186篇
  2006年   610篇
  2005年   1655篇
  2004年   1792篇
  2003年   2192篇
  2002年   1227篇
  2001年   440篇
  2000年   446篇
  1999年   306篇
  1998年   324篇
  1997年   271篇
  1996年   326篇
  1995年   235篇
  1994年   179篇
  1993年   174篇
  1992年   131篇
  1991年   127篇
  1990年   99篇
  1989年   94篇
  1988年   87篇
  1987年   87篇
  1986年   71篇
  1985年   68篇
  1984年   50篇
  1983年   43篇
  1982年   44篇
  1981年   43篇
  1980年   47篇
  1979年   44篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The objective of this study was to develop nanofibrillated cellulose (NFC)-based substrate for rapid detection of melamine in milk by surface-enhanced Raman spectroscopy (SERS). NFC were served as a highly porous platform to load with gold nanoparticles (AuNPs), which can be used as a flexible SERS substrate with nanoscale roughness to generate strong electromagnetic field in SERS measurement. The NFC/AuNP substrate was characterized by UV–Vis spectroscopy and electron microscopy. Milk samples contaminated by different concentrations of melamine were measured by SERS coupled with NFC/AuNP substrate. The spectral data analysis was conducted by multivariate statistical analysis [i.e. partial least squares (PLS)]. Satisfactory PLS result for quantification of melamine in milk was obtained (R = 0.9464). The detection limit for melamine extracted from liquid milk by SERS is 1 ppm, which meets the World Health Organization’s requirement of melamine in liquid milk. These results demonstrate that NFC/AuNP substrate has improved homogeneity and can be used in SERS analysis for food safety applications.  相似文献   
992.
The pore structure of the separator is crucial to the performance of a lithium-battery as it affects the cell resistance. Herein, a straightforward approach to vary the pore structure of Cladophora cellulose (CC) separators is presented. It is demonstrated that the pore size and porosity of the CC separator can be increased merely by decreasing the thickness of the CC separator by using less CC in the manufacturing of the separator. As the pore size and porosity of the CC separator are increased, the mass transport through the separator is increased which decreases the electrolyte resistance in the pores of the separator. This enhances the battery performance, particularly at higher cycling rates, as is demonstrated for LiFePO4/Li half-cells. A specific capacity of around 100 mAh g?1 was hence obtained at a cycling rate of 2 C with a 10 µm thick CC separator while specific capacities of 40 and close to 0 mAh g?1 were obtained for separators with thicknesses of 20 and 40 µm, respectively. As the results also showed that a higher ionic conductivity was obtained for the 10 µm thick CC separator than for the 20 and 40 µm thick CC separators, it is clear that the different pore structure of the separators was an important factor affecting the battery performance in addition to the separator thickness. The present straightforward, yet efficient, strategy for altering the pore structure hence holds significant promise for the manufacturing of separators with improved performance, as well as for fundamental studies of the influence of the properties of the separator on the performance of lithium-ion cells.  相似文献   
993.
Four novel stilbene-twelve alkyl quaternary ammonium salts 5a–d were synthesized. All synthesized compounds were characterized by FT-IR, 1H-NMR and elemental analysis. Compounds 5ad showed efficient whitening effect on cotton fiber and high fastness. Furthermore, compound 5c showed better stability to light than C186 in aqueous solution. The preliminary biological experiment demonstrated compounds 5ad possessed significant antibacterial activities. Among them, compound 5d turned out to be the most active compound against Candida albicans with MIC50 4 μg/mL as well as E. coli with MIC50 16 μg/mL.  相似文献   
994.
The organization of polysaccharides in plant cell walls is important for the mechanics of plant cells. Spectral analysis of cell walls by polarized IR can reveal polysaccharide organization, but may be complicated by dipoles not aligned with the backbone. For instance, analysis of uniaxially-aligned cellulose Iβ film revealed that the dipole transition vector of the 1160 cm?1 band involving stretch vibrations of glycosidic C1–O–C4 linkages is approximately at 30° with respect to the backbone of the cellulose chain, because of coupling with C5–O–C1 bonds in the six-membered rings. In the case of homogalacturonan, the dipole transition vector of the ester carbonyl group vibration (νC=O, 1745 cm?1) is expected to be nearly normal to the homogalacturonan backbone. Using this information and the dichroism equation, the change in net orientation of cell wall polymers upon mechanical stretch was determined by polarized IR analysis. Never-dried abaxial outer epidermal cell walls of the second scale of onion bulb were mechanically stretched along longitudinal or transverse directions with respect to the long axis of the cells and then dried while under mechanical stretch. The average orientations of both 1160 and 1745 cm?1 vibration transition dipoles were rotated by ~5° and ~4°, respectively, along the stretch direction from their initial random distributions upon longitudinal strain by 14%; and by ~4° and ~3°, respectively, upon transverse strain by 12%. These results imply that both cellulose microfibrils and pectins in the cell wall are passively realigned along the stretch direction by external mechanical force. The analytical methodology developed here will be useful to study how cell wall polymers might reorganize during cell wall growth and development.  相似文献   
995.
Chitosan/poly(ethylene oxide) (PEO) (5:1) nanofibers with cellulose nanocrystals (CNCs) were produced using an electrospinning technique. The addition of CNCs to the chitosan/PEO solutions allowed the production of uniform fibers (without beads) with a high proportion of chitosan. The fiber diameters were influenced by the concentration of CNCs in the chitosan/PEO solutions. The solutions containing 10% (w/w) of CNCs produced thinner fibers compared to solutions containing 5% (w/w) of CNCs. Thermogravimetric analysis indicated that the nanofibers were thermally stable, despite the CNCs having an effect on the PEO decomposition. Results from the cell assay in cultures of 3T3 fibroblasts indicated that the chitosan/PEO nanofibers (with 10% CNCs) promoted cell attachment with changes in the cytoskeletal organization. The results obtained in this work highlight the favorable effect of CNCs in electrospinning of chitosan/PEO. As expected, the influence of nanofibers on 3T3 fibroblasts F-actin and β-tubulin network revealed alterations in cytoskeleton, leading to changes in cell morphology and spreading.  相似文献   
996.
Flexibility and modulus of elasticity data for two types of wet cellulose fibres using a direct force–displacement method by means of AFM are reported for never dried wet fibres immersed in water. The flexibilities for the bleached softwood kraft pulp (BSW) fibres are in the range of 4–38 × 1012 N?1 m?2 while the flexibilities for the thermomechanical pulp (TMP) fibres are about one order of magnitude lower. For BSW the modulus of elasticity ranges from 1 to 12 MPa and for TMP between 15–190 MPa. These data are lower than most other available pulp fibre data and comparable to a soft rubber band. Reasons for the difference can be that our measurements with a direct method were performed using never dried fibres immersed in water while other groups have employed indirect methods using pulp with different treatments.  相似文献   
997.
In this study, electrochemical degradation of microcrystalline cellulose (MCC) under hot-compressed water was investigated via application of constant voltage on reaction medium. Constant voltage ranges from 2.5 to 8.0 V was applied between anode (Titanium) and cathode (reactor wall). As an electrolyte and proton source 5–25 mM of H2SO4 was used. Reactions were carried out in a specially designed batch reactor (450 mL) made of T316 for 240 min at temperature of 200 °C.MCC decomposition products such as glucose, fructose, furfural, 5-HMF and levulinic acid were detected and quantified by High Performance Liquid Chromatography (HPLC). In the absence of electrolyte, applied voltage (2.5 and 4.0 V) decreased the total organic carbon (TOC) yield, in contrast at 8.0 V, TOC yield increased to 13%. Application of 8.0 V in hydrothermal conditions alter MCC decomposition pathway selectively to furfural (15%). Addition of electrolyte (5 mM, H2SO4) and application of 2.5 V potential increased TOC (54%) and changed the decomposition pathway in favor of 5-HMF (30%) and levulinic acid (21%). The structural changes in solid residues of electrochemically reacted MCC was analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and found that MCC particles functionalized by carboxylic acid and sulfonated groups by the application of constant voltage to reaction medium. In the presence of electrolyte, under certain voltage (2.5 V), functionalization of solid particles became more obvious in FTIR spectrum results. Therefore, change in the selectivity values of degradation products were conducted with the functionalization of MCC particles due to applied voltage under sub-critical conditions.  相似文献   
998.
The aim of computational molecular design is the identification of promising hypothetical molecules with a predefined set of desired properties. We address the issue of accelerating the material discovery with state-of-the-art machine learning techniques. The method involves two different types of prediction; the forward and backward predictions. The objective of the forward prediction is to create a set of machine learning models on various properties of a given molecule. Inverting the trained forward models through Bayes’ law, we derive a posterior distribution for the backward prediction, which is conditioned by a desired property requirement. Exploring high-probability regions of the posterior with a sequential Monte Carlo technique, molecules that exhibit the desired properties can computationally be created. One major difficulty in the computational creation of molecules is the exclusion of the occurrence of chemically unfavorable structures. To circumvent this issue, we derive a chemical language model that acquires commonly occurring patterns of chemical fragments through natural language processing of ASCII strings of existing compounds, which follow the SMILES chemical language notation. In the backward prediction, the trained language model is used to refine chemical strings such that the properties of the resulting structures fall within the desired property region while chemically unfavorable structures are successfully removed. The present method is demonstrated through the design of small organic molecules with the property requirements on HOMO-LUMO gap and internal energy. The R package iqspr is available at the CRAN repository.  相似文献   
999.
In the context of the SAMPL5 blinded challenge standard free energies of binding were predicted for a dataset of 22 small guest molecules and three different host molecules octa-acids (OAH and OAMe) and a cucurbituril (CBC). Three sets of predictions were submitted, each based on different variations of classical molecular dynamics alchemical free energy calculation protocols based on the double annihilation method. The first model (model A) yields a free energy of binding based on computed free energy changes in solvated and host-guest complex phases; the second (model B) adds long range dispersion corrections to the previous result; the third (model C) uses an additional standard state correction term to account for the use of distance restraints during the molecular dynamics simulations. Model C performs the best in terms of mean unsigned error for all guests (MUE \(3.2\,<\,3.4\,<\,3.6\,\text{kcal}\,\text{mol}^{-1}\)—95 % confidence interval) for the whole data set and in particular for the octa-acid systems (MUE \(1.7\,<\,1.9\,<\,2.1\,\text{kcal}\,\text{mol}^{-1}\)). The overall correlation with experimental data for all models is encouraging (\(R^2\, 0.65\,<\,0.70<0.75\)). The correlation between experimental and computational free energy of binding ranks as one of the highest with respect to other entries in the challenge. Nonetheless the large MUE for the best performing model highlights systematic errors, and submissions from other groups fared better with respect to this metric.  相似文献   
1000.

Objective

Colony stimulating factors (CSFs) are endogenous cytokines that have key roles in proliferation and differentiation of hematopoietic progenitor cells and in regulation of mature blood cells performance. The CSFs families members are widely used for therapeutic purposes in many field include microbial infections, in cancer chemotherapy, alzheimer disease, hematopoiesis process, and for some neutropenia- related pathologies. Crown ethers are chemical compounds with therapeutic application that can affect the colony formation in vitro. The primary objective of the present study is to evaluate the effect of TDN (novel crown ether) on colony formation of red bone marrow cells in incubation with lung tissues cells.

Method

In this study, bone marrow cells and lung tissue cells of Balb/C were used as a source of hematopoietic stem cells and a source to production colony-stimulating factors, respectively. These cells were incubated with TDN separately and together.

Results

Briefly, the results of this study show that the effects of TDN has excitatory in concentrations lower than 50 µg/ml on colony formation and greater than 50 µg/ml is toxic to cells and it was inhibited the colony formation. Maximum stimulatory and inhibitory effects are shown in 50 and 400 µg/ml of crown ether and no colony was observed in the latter concentration.

Conclusion

The results from this study indicate that TDN significantly able to stimulate the colon formation while increased concentrations of TDN is inhibited colony formation by induction toxic effects due to excessive production of free radicals.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号