首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29623篇
  免费   4115篇
  国内免费   2727篇
化学   20373篇
晶体学   285篇
力学   1978篇
综合类   279篇
数学   3300篇
物理学   10250篇
  2024年   74篇
  2023年   571篇
  2022年   760篇
  2021年   895篇
  2020年   1104篇
  2019年   1060篇
  2018年   882篇
  2017年   784篇
  2016年   1235篇
  2015年   1179篇
  2014年   1488篇
  2013年   1997篇
  2012年   2574篇
  2011年   2674篇
  2010年   1662篇
  2009年   1641篇
  2008年   1749篇
  2007年   1670篇
  2006年   1508篇
  2005年   1242篇
  2004年   955篇
  2003年   803篇
  2002年   756篇
  2001年   575篇
  2000年   571篇
  1999年   678篇
  1998年   589篇
  1997年   585篇
  1996年   667篇
  1995年   513篇
  1994年   472篇
  1993年   392篇
  1992年   375篇
  1991年   325篇
  1990年   259篇
  1989年   204篇
  1988年   157篇
  1987年   137篇
  1986年   129篇
  1985年   118篇
  1984年   88篇
  1983年   61篇
  1982年   41篇
  1981年   36篇
  1980年   18篇
  1978年   19篇
  1977年   23篇
  1976年   20篇
  1975年   28篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
971.
The photofragmentation of CH_3I at 249 nm has been investigated by means of our crossed laser-molecular beam apparatus with rotatable supersonic beam source. The measured I~*/I yield ratio is about 4/1. The C—I bond dissociation energy obtained is 56±1 kcal mol~(-1). The vibrational energy distribution of CH_3 fragments has been roughly estimated.  相似文献   
972.
We observe the spontaneous formation of path-dependent monodisperse and polydisperse phospholipid unilamellar vesicles (ULV) from two different equilibrium morphologies specifically, disklike micelles and extended lamellae, respectively. On heating beyond a temperature Tc, low temperature disklike micelles, or so-called bicelles, transform into lamellae. Dilution of the lamellar phase, at a fixed temperature, results in a complete unbinding transition and the formation of polydisperse ULV, demonstrating the instability of the lamellar phase. On the other hand, heating of a dilute bicellar phase above Tc results in monodisperse ULV, which on cooling revert back to bicelles for lipid concentrations phi > or = 0.5 wt % and transform into oblate ellipsoids for phi = 0.1 wt %, a morphology not previously seen in "bicellar" lipid mixtures. Monodisperse ULV reform on heating of the oblate ellipsoids.  相似文献   
973.
Huang Y  Rawal VH 《Organic letters》2000,2(21):3321-3323
The hetero Diels-Alder reaction of 1-amino-3-siloxy-1,3-butadiene (1a) with a range of unactivated aldehydes proceeds readily under remarkably mild conditions: at room temperature and in the absence of Lewis acid catalysts. The cycloadducts are formed in good yields and can be converted directly to the corresponding dihydro-4-pyrones using acetyl chloride. Ketones and imines are also reactive in hetero Diels-Alder reactions with this diene.  相似文献   
974.
The coordination reactions of bromopyrogallol red (BPR) with tri- and hexavalent chromium in the presence of cetyltrimethylammonium bromide (CTAB) have been studied by absorption spectrometry. Results show that the reactions of Cr(VI) and Cr(III) with BPR in the absence or presence of CTAB have different temperature dependences. The reaction mechanism of Cr(VI) is that Cr(VI) is first reduced by BPR to Cr(III) and then the Cr(III) produced reacts with BPR. Based on the study on the coordination reactions and the effects of surfactants upon them, a simple, rapid, sensitive and accurate method for Cr speciation has been developed. Over the range of 0–8 g Cr(VI) or 0–12g Cr(III) per 25ml final volume, the calibration curve is linear with a detection limit of 3.5 × 10–7 mol/1 for Cr(VI) or 4.4 × 10–7 mol/1 for Cr(III).  相似文献   
975.
We report a facile route to pattern polymer surfaces with the aid of compressed CO(2), termed the compressed-CO(2)-assisted imprint method. In this method, compressed CO(2) serves as a plasticizer for polymers (such as poly(methyl methylate) and polystyrene), which leads to a tremendous reduction in the glass transition temperature and viscosity of the polymers. Nylon fabrics and anode aluminum oxide porous membranes are used as molds, respectively, to pattern the softened polymers at relatively low temperatures, resulting in patterns at the scale of micrometers and nanometers on the surface of polymer films. The patterned structures can be tuned by changing CO(2) pressure and temperature in the imprinting process. This method is simple and environmentally benign. It also can be operated at low temperatures, for instance, ambient temperature.  相似文献   
976.
The determination of rate constants for fast chemical reactions from nonexponential cavity ringdown profiles requires a consideration of the interfering laser bandwidth effect that arises if the line width of the ringdown probe laser exceeds the absorption line width of the detected species. The deconvolution of the kinetics and the bandwidth effect can be accomplished with the extended simultaneous kinetics and ringdown (eSKaR) model presented by Guo et al. (Guo, et al. Phys. Chem. Chem. Phys. 2003, 5, 4622). We present a detailed validation of this eSKaR model by a corresponding investigation of the well-known rate constant for the reaction NH2 + NO. Line profiles of the pulsed ringdown probe laser and the NH2 absorption line were determined from forward modeling of experimental ringdown profiles and verified by narrow-bandwidth laser absorption measurements. In addition, the rate constant for the title reaction was evaluated using the eSKaR model and also by means of a conventional pump-probe approach with variable time delays between the photolysis (pump) and ringdown (probe) laser pulses. The resulting room temperature rate constant for the NH2 + NO reaction, k1= (8.5 +/- 1.0) x 10(12) cm(3) mol(-1) s(-1), and the room temperature pressure broadening coefficient of NH2, = 2.27 GHz/bar, measured on the A2A1<-- X2B1 transition at wavelengths around lambda = 597 nm, were found to be in excellent agreement with the available literature data.  相似文献   
977.
A theoretical comparative study of complexes of porphyrin (P), porphyrazine (Pz), phthalocyanine (Pc), porphycene (Pn), dibenzoporphycene (DBPn), and hemiporphyrazine (HPz) with iron (Fe) has been carried out using a density functional theory (DFT) method. The difference in the core size and shape of the macrocycle has a substantial effect on the electronic structure and properties of the overall system. The ground states of FeP and FePc were identified to be the 3A2g [(d(xy))2(d(z)2)2(d(pi))2] state, followed by 3E(g) [(d(xy))2(d(z)2)1(d(pi))3]. For FePz, however, the 3E(g)-3A2g energy gap of 0.02 eV may be too small to distinguish between the ground and excited states. When the symmetry of the macrocycle is reduced from D4h to D2h, the degeneracy of the d(pi) (d(xz), d(yz)) orbitals is removed, and the ground state becomes 3B2g [(d(xy))2(d(z)2)1(d(yz))2(d(xz))1] or 3B3g [...(d(yz))1(d(xz))2] for FePn, FeDBPn, and FeHPz. The calculations also show how the change of the macrocycle can influence the axial ligand coordination of pyridine (Py) and CO to the Fe(II) complexes. Finally, the electronic structures of the mono- and dipositive and -negative ions for all the unligated and ligated iron macrocycles were elucidated, which is important for understanding the redox properties of these compounds. The differences in the observed electrochemical (oxidation and reduction) properties between metal porphycenes (MPn) and metal porphyrins (MP) can be accounted for by the calculated results (orbital energy level diagrams, ionization potentials, and electron affinities).  相似文献   
978.
Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C–N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas–liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO2 followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines.

Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk.  相似文献   
979.
Methylmaleic (citraconic, CTA) acid and methylfumaric (measaconic, MSA) acid in aqueous sulfuric acid solution undergo bromine-catalyzed reversible cis-trans isomerization in the presence of ceric and bromide ions. The positional isomerization of CTA or MSA to itaconic acid (ITA) is not observed. The method of high performance liquid chromatography (HPLC) was applied to study the kinetics of this catalyzed isomerization. The major catalytic species is best expressed as the Br?2 · radical anion. Under suitable catalytic conditions, there is a tendency for the [MSA]/[CTA] ratio to reach an equilibrium value of 4.10 at 25° for the CTA+Br?2 · ? MSA+Br?2 · reaction. Chloromaleic (CMA) and chlorofumaric (CFA) acids undergo similar isomerization with an equilibrium [CFA]/[CMA] ratio of 10.3 at 25°. The isomerization of maleic acid (MA) to fumaric acid (FA) is essentially irreversible with 50 as the lower limit of the equilibrium [FA]/[MA] ratio. The substituent has an important effect on the reversibility of this catalyzed isomerization of butenedicarboxylic acids. The thermodynamic parameters ΔH° and ΔS° at 25° for the CTA+Br?2 · ? MSA+Br?2 · reaction were found to be ?5.1±0.7 kj/mol and ?6.0±3.3 J/mol K, respectively. The present method gives a plausible way to measure the differences in enthalpy and entropy between the trans- and cis-isomers of butenedicarboxylic acids (CRCO2H=CR'CO2H) in aqueous solution.  相似文献   
980.
PreparationandCrystalStructureofPrNb_5O_(14)¥MaoJiang-Gao;ZhuangHong-Hui;HuangJin-Shun(StateKeyLaboratoryofStructuralChemistry...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号