首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   25篇
化学   218篇
晶体学   1篇
力学   4篇
数学   42篇
物理学   24篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   12篇
  2018年   1篇
  2017年   3篇
  2016年   15篇
  2015年   13篇
  2014年   13篇
  2013年   18篇
  2012年   20篇
  2011年   18篇
  2010年   14篇
  2009年   16篇
  2008年   19篇
  2007年   12篇
  2006年   14篇
  2005年   10篇
  2004年   13篇
  2003年   7篇
  2002年   9篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   3篇
  1989年   2篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   6篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
  1961年   1篇
  1960年   1篇
排序方式: 共有289条查询结果,搜索用时 15 毫秒
51.
52.
53.
54.
In this study, an improved process for the synthesis of etorphine and dihydroetorphine from codeine with an overall yield of 2.7% and 1.5% respectively is described. The structure of 19‐propylthevinol 7 was verfied by X‐ray structure analysis. This result is promising for synthesizing various morphine‐based drugs.  相似文献   
55.
56.
The commonly used “stealth material” poly(ethylene glycol) (PEG) effectively promotes the pharmacokinetics of therapeutic cargos while reducing their immune response. However, recent studies have suggested that PEG could induce adverse reactions, including the emergence of anti‐PEG antibodies and tissue histologic changes. An alternative stealth material with no or less immunogenicity and organ toxicity is thus urgently needed. We designed a polypeptide with high zwitterion density (PepCB) as a stealth material for therapeutics. Neither tissue histological changes in liver, kidney, or spleen, nor abnormal behavior, sickness or death was induced by the synthesized polymer after high‐dosage administration for three months in rats. When conjugated to a therapeutic protein uricase, the uricase–PepCB bioconjugate showed significantly improved pharmacokinetics and immunological properties compared with uricase–PEG conjugates.  相似文献   
57.
58.
59.
Thermodynamic uncertainty relations (TURs) represent one of the few broad-based and fundamental relations in our toolbox for tackling the thermodynamics of nonequilibrium systems. One form of TUR quantifies the minimal energetic cost of achieving a certain precision in determining a nonequilibrium current. In this initial stage of our research program, our goal is to provide the quantum theoretical basis of TURs using microphysics models of linear open quantum systems where it is possible to obtain exact solutions. In paper [Dong et al., Entropy 2022, 24, 870], we show how TURs are rooted in the quantum uncertainty principles and the fluctuation–dissipation inequalities (FDI) under fully nonequilibrium conditions. In this paper, we shift our attention from the quantum basis to the thermal manifests. Using a microscopic model for the bath’s spectral density in quantum Brownian motion studies, we formulate a “thermal” FDI in the quantum nonequilibrium dynamics which is valid at high temperatures. This brings the quantum TURs we derive here to the classical domain and can thus be compared with some popular forms of TURs. In the thermal-energy-dominated regimes, our FDIs provide better estimates on the uncertainty of thermodynamic quantities. Our treatment includes full back-action from the environment onto the system. As a concrete example of the generalized current, we examine the energy flux or power entering the Brownian particle and find an exact expression of the corresponding current–current correlations. In so doing, we show that the statistical properties of the bath and the causality of the system+bath interaction both enter into the TURs obeyed by the thermodynamic quantities.  相似文献   
60.
Thermodynamic uncertainty principles make up one of the few rare anchors in the largely uncharted waters of nonequilibrium systems, the fluctuation theorems being the more familiar. In this work we aim to trace the uncertainties of thermodynamic quantities in nonequilibrium systems to their quantum origins, namely, to the quantum uncertainty principles. Our results enable us to make this categorical statement: For Gaussian systems, thermodynamic functions are functionals of the Robertson-Schrödinger uncertainty function, which is always non-negative for quantum systems, but not necessarily so for classical systems. Here, quantum refers to noncommutativity of the canonical operator pairs. From the nonequilibrium free energy, we succeeded in deriving several inequalities between certain thermodynamic quantities. They assume the same forms as those in conventional thermodynamics, but these are nonequilibrium in nature and they hold for all times and at strong coupling. In addition we show that a fluctuation-dissipation inequality exists at all times in the nonequilibrium dynamics of the system. For nonequilibrium systems which relax to an equilibrium state at late times, this fluctuation-dissipation inequality leads to the Robertson-Schrödinger uncertainty principle with the help of the Cauchy-Schwarz inequality. This work provides the microscopic quantum basis to certain important thermodynamic properties of macroscopic nonequilibrium systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号