首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5725篇
  免费   1033篇
  国内免费   570篇
化学   3731篇
晶体学   54篇
力学   276篇
综合类   39篇
数学   737篇
物理学   2491篇
  2024年   11篇
  2023年   131篇
  2022年   153篇
  2021年   195篇
  2020年   230篇
  2019年   194篇
  2018年   180篇
  2017年   174篇
  2016年   292篇
  2015年   247篇
  2014年   313篇
  2013年   377篇
  2012年   491篇
  2011年   556篇
  2010年   348篇
  2009年   336篇
  2008年   370篇
  2007年   339篇
  2006年   326篇
  2005年   266篇
  2004年   197篇
  2003年   170篇
  2002年   195篇
  2001年   151篇
  2000年   125篇
  1999年   156篇
  1998年   130篇
  1997年   112篇
  1996年   106篇
  1995年   71篇
  1994年   54篇
  1993年   54篇
  1992年   47篇
  1991年   60篇
  1990年   32篇
  1989年   29篇
  1988年   23篇
  1987年   17篇
  1986年   22篇
  1985年   17篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
  1981年   6篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1957年   1篇
排序方式: 共有7328条查询结果,搜索用时 15 毫秒
231.
Amidoxime (AO)/amine co-functionalized polypropylene fiber adsorbents were prepared. The all-polymeric structures were characterized by using Fourier transform infrared spectroscopy (FTIR), optical microscope, contact angle meter and electron spin resonance (ESR) analysis methods, confirming the grafting, modification, and amidoximation stages gravimetrically, spectroscopically, and visually. The properties for the removal of uranyl(VI) from aqueous solutions were investigated. For amidoxime (AO) fiber, high adsorption rate was observed within the first 30 minutes and the plateau value of 40.6% uranium loading (0.0812 mg/g) was reached at around 30 minutes. The adsorption equilibrium for AO/amine fiber was attained within 20 minutes, resulting in the adsorption of 92.6% uranium loading (0.185 mg/g). The percentage of adsorption increases with increasing pH value (2–6), reaches a maximum at pH 6.0 and then remains almost constant for AO/amine fiber, whereas reduces slightly for AO fiber.  相似文献   
232.
The mechanism of spontaneous imbibition of water by sandstone cores and the relationship between reservoir wettability and imbibition recovery were studied by investigating factors influencing the spontaneous imbibition of different surfactants by oil-wet sandstone cores. Ultimate oil recovery of cores using the cationic surfactant CTAB was higher than that of the cores using the nonionic surfactant TX-100 and the anionic surfactant POE (1) at the same concentration. For CTAB and TX-100, the ultimate oil recovery by spontaneous imbibition increased with increase in surfactant concentration. In regard to imbibition recovery, TX-100 and POE(1) at high temperatures were superior to those at low temperatures. Ultimate oil recovery of the high-permeability core was higher than that of the low-permeability core at room temperature. According to changes in the driving force during the imbibition process, the imbibition curve could be divided into three regions: (1) mainly capillary force, (2) both capillary and gravity forces, and (3) mainly gravity force. The stronger the hydrophilicity of the rock surface, the higher the spontaneous imbibition recovery.  相似文献   
233.
Different experimental methods including ellipsometry, zeta potential measurements, imbibition studies, and contact angle measurements were used to study the mechanism and influencing factors of wettability alteration of water-wet sandstone surface caused by CTAB (hexadecyl trimethyl ammonium bromide). Results show that when the concentration of CTAB reaches a certain level (below CMC), due to the electrostatic attraction between the positively charged head groups of CTAB and the negatively charged sandstone surface, the monolayer of CTAB is formed and hydrophobic chains of CTAB molecules are toward the aqueous phase, making the solid surface oil-wet. When the concentration of CTAB continues to increase (above CMC), due to the hydrophobic interaction, the compact bilayer of CTAB is formed and hydrophilic head groups of CTAB molecules are toward the aqueous phase, rendering the solid surface water-wet. The contact angles between the oil–water interface and the surface treated with CTAB increase with the increase of the concentration of NaCl and CaCl2. Compared to NaCl, the inorganic salt CaCl2 has a greater impact on the contact angle. In addition, the contact angles increase with the increase of temperature and decrease with the increase of pH value of the aqueous solution.  相似文献   
234.
A series of functional polyorganosiloxanes containing fluorocarbon side chain and amino groups had been synthesized by ring-opening polymerization. The raw materials used were Octamethyl cyclotetrasiloxane (D4), dodecafluoroheptyl-propyl-trimethoxylsilane (502) and γ-aminopropyltriethoxylsilane (550), respectively. FTIR, 1H-NMR, 13C-NMR, and 19F-NMR were used to characterize the copolymer structures. The surface properties of the functional polyorganosiloxanes emulsions were discussed. The results showed that the functional polyorganosiloxanes containing fluorocarbon and amino side chains had low surface tension and excellent water repellency.  相似文献   
235.
The organic/inorganic hybrid nanomaterials containing silica nanoparticles are synthesized by sol-gel crosslinking process. The tetraethoxysilane (TEOS) and γ-aminopropyltriethoxylsilane as coupling agents are used as a precursor. The 2,4,6-tri [(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) as crosslinking agent is used to form covalent bonds among the inorganic nanoparticles. The chemical and morphological structures of the organic/inorganic hybrid are characterized with FTIR spectra, 29Si-NMR, x-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and atomic force microscope (AFM). The results show that the organic/inorganic hybrid forms covalent bond between the inorganic nanoparticle and Tri-EBAC. The network organic/inorganic hybrid can form good film with even nanometer particles. The network organic/inorganic hybrids nanomaterial not only exhibits the thermal properties of inorganic compounds, but also exhibits the thermal properties of organic polymer.  相似文献   
236.
The inhibition effect of cetyl trimethyl ammonium bromide (CTAB) on the corrosion of mild steel in 1.0 mol L?1 hydrochloric acid (HCl) has been studied at different temperatures (25–60°C) by weight loss and potentiodynamic polarization methods. The results reveal that CTAB behaves as an effective inhibitor in 1.0 mol L?1 HCl, and the inhibition efficiency increases with the inhibitor concentration. Polarization curves show that CTAB is a mixed-type inhibitor in hydrochloric acid. The results obtained from weight loss and polarizations are in good agreement. The effect of immersion time on corrosion inhibition has also been examined and is discussed. The adsorption of inhibitor on mild steel surface obeys the Langmuir adsorption isotherm equation. Thermodynamic parameters have been obtained by adsorption theory. The inhibition effect is satisfactorily explained by the parameters.  相似文献   
237.
梅平  侯聪  赖璐  吴小梅  刘义  郑延成 《化学通报》2013,(11):1034-1039
以溴代正烷烃、乙二胺、1,3-丙磺内酯合成了一系列新型磺酸盐型Gemini表面活性剂(SGS-8、SGS-10、SGS-12、SGS-14);采用IR、1H NMR及元素分析等手段对合成产物进行结构表征,并研究了其表面活性,采用等温滴定微量热技术、表面张力法和稳态荧光光谱法研究了SGS-12与聚丙烯酰胺(PAM)的相互作用规律及热力学参数。结果表明,合成的产物纯度较高,具有较低的cmc值和较好的表面活性;SGS-12/PAM混合体系的表面张力曲线和芘探针在体系中微极性的变化表明,二者发生相互作用且形成混合胶束;SGS-12与PAM结合是一个由焓驱动的自发过程,△H和△S均小于0,表明相互作用力以氢键和范德华力为主,合成产物在聚丙烯酰胺分子上的平均结合数为287。  相似文献   
238.
239.
Proteins typically have nanoscale dimensions and multiple binding sites with inorganic ions, which facilitates the templated synthesis of nanoparticles to yield nanoparticle–protein hybrids with tailored functionality, water solubility, and tunable frameworks with well‐defined structure. In this work, we report a protein‐templated synthesis of Mn‐doped ZnS quantum dots (QDs) by exploring bovine serum albumin (BSA) as the template. The obtained Mn‐doped ZnS QDs give phosphorescence emission centered at 590 nm, with a decay time of about 1.9 ms. A dual‐channel sensing system for two different proteins was developed through integration of the optical responses (phosphorescence emission and resonant light scattering (RLS)) of Mn‐doped ZnS QDs and recognition of them by surface BSA phosphorescent sensing of trypsin and RLS sensing of lysozyme. Trypsin can digest BSA and remove BSA from the surface of Mn‐doped ZnS QDs, thus quenching the phosphorescence of QDs, whereas lysozyme can assemble with BSA to lead to aggregation of QDs and enhanced RLS intensity. The detection limits for trypsin and lysozyme were 40 and 3 nM , respectively. The selectivity of the respective channel for trypsin and lysozyme was evaluated with a series of other proteins. Unlike other protein sensors based on nanobioconjugates, the proposed dual‐channel sensor employs only one type of QDs but can detect two different proteins. Further, we found the RLS of QDs can also be useful for studying the BSA–lysozyme binding stoichiometry, which has not been reported in the literature. These successful biosensor applications clearly demonstrate that BSA not only serves as a template for growth of Mn‐doped ZnS QDs, but also impacts the QDs for selective recognition of analyte proteins.  相似文献   
240.
The use of transition‐metal nanoparticles/ionic liquid (IL) as a thermoregulated and recyclable catalytic system for hydrogenation has been investigated under mild conditions. The functionalized ionic liquid was composed of poly(ethylene glycol)‐functionalized alkylimidazolium as the cation and tris(meta‐sulfonatophenyl)phosphine ([P(C6H4m‐SO3)3]3?) as the anion. Ethyl acetate was chosen as the thermomorphic solvent to avoid the use of toxic organic solvents. Due to a cooperative effect regulated by both the cation and anion of the ionic liquid, the nanocatalysts displayed distinguished temperature‐dependent phase behavior and excellent catalytic activity and selectivity, coupled with high stability. In the hydrogenation of α,β‐unsaturated aldehydes, the ionic‐liquid‐stabilized palladium and rhodium nanoparticles exhibited higher selectivity for the hydrogenation of the C?C bonds than commercially available catalysts (Pd/C and Rh/C). We believe that the anion of the ionic liquid, [P(C6H4m‐SO3)3]3?, plays a role in changing the surrounding electronic characteristics of the nanoparticles through its coordination capacity, whereas the poly(ethylene glycol)‐functionalized alkylimidazolium cation is responsible for the thermomorphic properties of the nanocatalyst in ethyl acetate. The present catalytic systems can be employed for the hydrogenation of a wide range of substrates bearing different functional groups. The catalysts could be easily separated from the products by thermoregulated phase separation and efficiently recycled ten times without significant changes in their catalytic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号