首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   14篇
化学   133篇
数学   2篇
物理学   16篇
  2023年   1篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2017年   3篇
  2016年   7篇
  2015年   6篇
  2014年   4篇
  2013年   1篇
  2012年   6篇
  2011年   10篇
  2010年   14篇
  2009年   15篇
  2008年   11篇
  2007年   10篇
  2006年   15篇
  2005年   6篇
  2004年   9篇
  2003年   8篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1982年   2篇
  1981年   1篇
  1972年   1篇
排序方式: 共有151条查询结果,搜索用时 31 毫秒
91.
The need for novel materials with luminescent properties and advanced processing features requires reliable and reproducible synthetic routes for the design of suitable materials, such as e.g. polypyridyl ruthenium(II) and iridium(III)-containing polymers. The most popular ligand for those purposes is the 4,4'-functionalized bipyridine unit. Therefore, several synthetic strategies for the derivatization of the 4,4'-dimethyl-2,2'-bipyridine are highlighted, and in particular functionalities, which enable further covalent linkage to polymeric structures, are discussed in this critical review. Subsequently, the different synthetic strategies for the preparation of polymeric metal-complexes are described, either starting from small functionalized complexes (later covalently attached to the polymer), or from macroligands (subsequently coordinated to the metal ions). The designed materials reveal good processing properties using spin coating and inkjet printing, as well as beneficial electro-optical properties for potential thin functional film applications, such as light-emitting electrochemical cells.  相似文献   
92.
Summary: The ring‐opening cationic polymerization of 2‐ethyl‐2‐oxazoline was performed in a single‐mode microwave reactor as the first example of a microwave‐assisted living polymerization. The observed increase in reaction rates by a factor of 350 (6 h → 1 min) in the range from 80 to 190 °C could be attributed solely to a temperature effect as was clearly shown by control experiments and the determined activation energy. Because of the homogenous microwave irradiation, the polymerization could be performed in bulk or with drastically reduced solvent ratios (green chemistry).

Monomer conversion, represented by the ratio ln{[M0]/[Mt]}, plotted against time for six temperatures in the range from 80 to 180 °C, and polymerization reaction vials, showing an increase in yellow color for those reactions performed (well) above and below 140 °C, indicating side reactions.  相似文献   

93.
Combinatorial techniques, parallel experimentation and high‐throughput methods represent a very promising approach in order to speed up the preparation and investigation of new polymeric materials: a large variety of parameters can be screened simultaneously resulting in new structure/property relationships. The field of polymer research seems to be perfectly suited for parallel and combinatorial methods due to the fact that many parameters can be varied during synthesis, processing, blending as well as compounding. In addition, numerous important parameters have to be investigated, such as molecular weight, polydispersity, viscosity, hardness, stiffness and other application‐specific properties. A number of corresponding high‐throughput techniques have been developed in the last few years and their introduction into the commercial market further boosted the development. These combinatorial approaches can reduce the time‐to‐market for new polymeric materials drastically compared to traditional approaches and allow a much more detailed understanding of polymers from the macroscopic to the nanoscopic scale. Here we provide an overview of the present status of combinatorial and parallel polymer synthesis and high‐throughput screening.

  相似文献   

94.
Herein, we report the design and synthesis of a block copolymer (BCP) with a high Flory–Huggins interaction parameter to access 10 nm feature sizes for potential lithographic applications. The investigated BCP is poly[(2‐methyl‐2‐oxazoline)‐block‐styrene] (PMeOx‐b‐PS), where the PMeOx segment functions as a hydrophilic segment. Two BCPs with different molecular weights were prepared using PMeOx as macroinitiator for copper(0) mediated controlled radical polymerization. The thin film self‐assembly of the obtained PMeOx‐b‐PS was performed by solvent annealing and investigated by atomic force microscopy. Both polymers formed PMeOx cylinders in a PS matrix with an average cylinder diameter of 10.5 nm. Additionally, the ability of the PMeOx domains to selectively degrade under ultraviolet irradiation was explored. It was shown that scission of the PMeOx block does occur selectively, and furthermore that the degraded domains can be removed while leaving the PS matrix intact. By combining synthetic accessibility, small feature sizes, and a selectively cleavable domain, this new BCP system holds significant promise as a lithographic mask for patterning surfaces with high precision. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1349–1357  相似文献   
95.
Polymers that possess lower critical solution temperature behavior such as poly(2‐alkyl‐2‐oxazoline)s (PAOx) are interesting for their application as stimulus‐responsive materials, for example in the biomedical field. In this work, we discuss the scalable and controlled synthesis of a library of pH‐ and temperature‐sensitive 2‐n‐propyl‐2‐oxazoline P(nPropOx) based copolymers containing amine and carboxylic acid functionalized side chains by cationic ring opening polymerization and postpolymerization functionalization strategies. Using turbidimetry, we found that the cloud point temperature (CP) is strongly dependent on both the polymer concentration and the polymer charge (as a function of pH). Furthermore, we observed that the CP decreased with increasing salt concentration, whereas the CP increased linearly with increasing amount of carboxylic acid groups. Finally, turbidimetry studies in PBS‐buffer indicate that CPs of these polymers are close to body temperature at biologically relevant polymer concentrations, which demonstrates the potential of P(nPropOx) as stimulus‐responsive polymeric systems in, for example, drug delivery applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1573–1582  相似文献   
96.
Poly(ethylene glycol) (PEG) is the most used polymer and also the gold standard for stealth polymers in the emerging field of polymer‐based drug delivery. The properties that account for the overwhelming use of PEG in biomedical applications are outlined in this Review. The first approved PEGylated products have already been on the market for 20 years. A vast amount of clinical experience has since been gained with this polymer—not only benefits, but possible side effects and complications have also been found. The areas that might need consideration and more intensive and careful examination can be divided into the following categories: hypersensitivity, unexpected changes in pharmacokinetic behavior, toxic side products, and an antagonism arising from the easy degradation of the polymer under mechanical stress as a result of its ether structure and its non‐biodegradability, as well as the resulting possible accumulation in the body. These possible side effects will be discussed in this Review and alternative polymers will be evaluated.  相似文献   
97.
2‐Oxazolines (2‐OZO) are 5‐membered cyclic imino ethers whose cationic ring‐opening polymerization (CROP) mechanism and resulting polymer properties are extensively studied. However, also 6‐ and 7‐membered cyclic imino ethers can be polymerized via CROP. Together with the much less studied 4‐ and 5‐substituted main‐chain chiral poly(2‐oxazoline)s (P‐2‐OZO), these compounds are interesting monomers to enhance the versatility of (co)poly(cyclic imino ether)s. To emphasize the potential of such alternative cyclic imino ether monomers, we provide an overview on the polymerizations of 2‐oxazine (2‐OZI) and chiral 4‐ and 5‐substituted 2‐OZO as well as of selected properties of the resulting polymers. In addition, the hydrolysis of these polymers into the corresponding poly(alkylene imine)s will be addressed.

  相似文献   

98.
We present a single-molecule study unraveling the effect of static disorder on the vibrational-assisted ultrafast exciton dynamics in multichromophoric systems. For every single complex, we probe the initial exciton relaxation process by an ultrafast pump-probe approach and the coupling to vibrational modes by emission spectra, while fluorescence lifetime analysis measures the amount of static disorder. Exploiting the wide range of disorder found from complex to complex, we demonstrate that static disorder accelerates the dephasing and energy relaxation rate of the exciton.  相似文献   
99.
Using small-angle neutron scattering, we have studied the flux-line lattice (FLL) in the superclean, high-kappa superconductor CeCoIn5. The FLL undergoes a first-order symmetry and reorientation transition at approximately 0.55 T at 50 mK. In addition, the FLL form factor in this material is found to be independent of the applied magnetic field, in striking contrast to the exponential decrease usually observed in superconductors. This result is consistent with a strongly field-dependent coherence length, proportional to the vortex separation.  相似文献   
100.
The introduction of supramolecular interactions in synthetic polymers seems to be a promising approach towards novel 'smart' materials that combine both the (reversible) supramolecular interactions and the properties of the polymers. In this tutorial review, the use of (metallo-)supramolecular initiators for the preparation of end-functionalized (metallo-)supramolecular polymers will be discussed in detail. The different polymerization techniques that have been applied as well as the different ligands and metal complexes that were used to initiate these polymerizations will be discussed together with the resulting polymer properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号