首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73510篇
  免费   9826篇
  国内免费   6442篇
化学   48237篇
晶体学   737篇
力学   4887篇
综合类   522篇
数学   8624篇
物理学   26771篇
  2024年   662篇
  2023年   1594篇
  2022年   2497篇
  2021年   2932篇
  2020年   3118篇
  2019年   2947篇
  2018年   2210篇
  2017年   1949篇
  2016年   3062篇
  2015年   3094篇
  2014年   3672篇
  2013年   4859篇
  2012年   5898篇
  2011年   6034篇
  2010年   4085篇
  2009年   4029篇
  2008年   4198篇
  2007年   3802篇
  2006年   3576篇
  2005年   3107篇
  2004年   2508篇
  2003年   1903篇
  2002年   1695篇
  2001年   1523篇
  2000年   1420篇
  1999年   1564篇
  1998年   1337篇
  1997年   1171篇
  1996年   1228篇
  1995年   1072篇
  1994年   1009篇
  1993年   868篇
  1992年   769篇
  1991年   667篇
  1990年   566篇
  1989年   493篇
  1988年   373篇
  1987年   357篇
  1986年   312篇
  1985年   310篇
  1984年   209篇
  1983年   187篇
  1982年   150篇
  1981年   120篇
  1980年   83篇
  1978年   58篇
  1977年   52篇
  1976年   50篇
  1975年   57篇
  1973年   57篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
In this paper, quantum correlation (QC) swapping between two Werner-like states, which are transformed from Werner states undergoing local and nonlocal unitary operations, are studied. Bell states measures are performed in the middle node to realize the QC swapping and correspondingly final correlated sates are obtained. Two different QC quantifiers, i.e., measurement-induced disturbance (MID) and ameliorated MID, are employed to characterize and quantify all the concerned QCs in the swapping process. All QCs in the concerned states are evaluated analytically and numerically. Correspondingly, their characteristics and properties are exposed in detail. It is exposed that, through the QC swapping process, one can obtain the long-distance QC indeed. Moreover, the similarities of monotony features of MID and AMID between the initial states and final states are exposed and analyzed.  相似文献   
112.
Adding nanoparticles or surfactants to pure working fluid is a common and effective method to improve the heat transfer performance of pool boiling. The objective of this research is to determine whether additives have the same efficient impact on heat transfer enhancement of the non-azeotropic mixture. In this paper, Ethylene Glycol/Deionized Water (EG/DW) was selected as the representing non-azeotropic mixture, and a comparative experiment was carried out between it and the pure working fluid. In addition, the effects of different concentrations of additives on the pool boiling heat transfer performance under different heat fluxes were experimentally studied, including TiO2 nanoparticles with different particle diameters, different kinds of surfactants, and mixtures of nanofluids and surfactants. The experimental results showed that the nanoparticles deteriorated the heat transfer of the EG/DW solution, while the surfactant enhanced the heat transfer of the solution when the concentration closed to a critical mass fraction (CMC). However, the improvement effect was unsteady with the increase in the heat flux density. The experimental results suggest that the mass transfer resistance of the non-azeotropic mixture is the most important factor in affecting heat transfer enhancement. Solutions with 20 nm TiO2 obtained a steady optimum heat transfer improvement by adding surfactants.  相似文献   
113.
As the foundation of quantum secure communication, the quantum key distribution (QKD) network is impossible to construct by using the operation mechanism of traditional networks. In the meantime, most of the existing QKD network routing schemes do not fit some specific quantum key practicality scenarios. Aiming at the special scenario of high concurrency and large differences in application requirements, we propose a new quantum key distribution network routing scheme based on application priority ranking (APR-QKDN). Firstly, the proposed APR-QKDN scheme comprehensively uses the application’s priority, the total amount of key requirements, and the key update rate for prioritizing a large number of concurrent requests. The resource utilization and service efficiency of the network are improved by adjusting the processing order of requests. Secondly, the queuing strategy of the request comprehensively considers the current network resource situation. This means the same key request may adopt different evaluation strategies based on different network resource environments. Finally, the performance of the APR-QKDN routing scheme is compared with the existing schemes through simulation experiments. The results show that the success rate of application key requests of the APR-QKDN routing scheme is improved by at least 5% in the scenario of high concurrency.  相似文献   
114.
The Bayesian Network (BN) structure learning algorithm based on dynamic programming can obtain global optimal solutions. However, when the sample cannot fully contain the information of the real structure, especially when the sample size is small, the obtained structure is inaccurate. Therefore, this paper studies the planning mode and connotation of dynamic programming, restricts its process with edge and path constraints, and proposes a dynamic programming BN structure learning algorithm with double constraints under small sample conditions. The algorithm uses double constraints to limit the planning process of dynamic programming and reduces the planning space. Then, it uses double constraints to limit the selection of the optimal parent node to ensure that the optimal structure conforms to prior knowledge. Finally, the integrating prior-knowledge method and the non-integrating prior-knowledge method are simulated and compared. The simulation results verify the effectiveness of the method proposed and prove that the integrating prior knowledge can significantly improve the efficiency and accuracy of BN structure learning.  相似文献   
115.
A model of a multi-reservoir resource exchange intermediary also defined as a commercial engine is proposed according to analogies and similarities between thermodynamics and economics. The optimal configuration of a multi-reservoir commercial engine with a maximum profit output objective is determined by applying optimal control theory. The optimal configuration consists of two instantaneous constant commodity flux processes and two constant price processes, and the configuration is independent of a number of economic subsystems and commodity transfer law qualitatively. The maximum profit output needs some economic subsystems to never contact with the commercial engine during commodity transfer processes. Numerical examples are provided for a three-economic-subsystem commercial engine with linear commodity transfer law. The effects of price changes of an intermediate economic subsystem on the optimal configuration of a three-economic-subsystem and the performance of optimal configuration are discussed. The research object is general, and the results can provide some theoretical guidelines for operations of actual economic processes and systems.  相似文献   
116.
In order to further improve the information effectiveness of digital image transmission, an image-encryption algorithm based on 2D-Logistic-adjusted-Sine map (2D-LASM) and Discrete Wavelet Transform (DWT) is proposed. First, a dynamic key with plaintext correlation is generated using Message-Digest Algorithm 5 (MD5), and 2D-LASM chaos is generated based on the key to obtain a chaotic pseudo-random sequence. Secondly, we perform DWT on the plaintext image to map the image from the time domain to the frequency domain and decompose the low-frequency (LF) coefficient and high-frequency (HF) coefficient. Then, the chaotic sequence is used to encrypt the LF coefficient with the structure of “confusion-permutation”. We perform the permutation operation on HF coefficient, and we reconstruct the image of the processed LF coefficient and HF coefficient to obtain the frequency-domain ciphertext image. Finally, the ciphertext is dynamically diffused using the chaotic sequence to obtain the final ciphertext. Theoretical analysis and simulation experiments show that the algorithm has a large key space and can effectively resist various attacks. Compared with the spatial-domain algorithms, this algorithm has great advantages in terms of computational complexity, security performance, and encryption efficiency. At the same time, it provides better concealment of the encrypted image while ensuring the encryption efficiency compared to existing frequency-domain methods. The successful implementation on the embedded device in the optical network environment verifies the experimental feasibility of this algorithm in the new network application.  相似文献   
117.
Infrared-visible fusion has great potential in night-vision enhancement for intelligent vehicles. The fusion performance depends on fusion rules that balance target saliency and visual perception. However, most existing methods do not have explicit and effective rules, which leads to the poor contrast and saliency of the target. In this paper, we propose the SGVPGAN, an adversarial framework for high-quality infrared-visible image fusion, which consists of an infrared-visible image fusion network based on Adversarial Semantic Guidance (ASG) and Adversarial Visual Perception (AVP) modules. Specifically, the ASG module transfers the semantics of the target and background to the fusion process for target highlighting. The AVP module analyzes the visual features from the global structure and local details of the visible and fusion images and then guides the fusion network to adaptively generate a weight map of signal completion so that the resulting fusion images possess a natural and visible appearance. We construct a joint distribution function between the fusion images and the corresponding semantics and use the discriminator to improve the fusion performance in terms of natural appearance and target saliency. Experimental results demonstrate that our proposed ASG and AVP modules can effectively guide the image-fusion process by selectively preserving the details in visible images and the salient information of targets in infrared images. The SGVPGAN exhibits significant improvements over other fusion methods.  相似文献   
118.
Dempster–Shafer evidence theory is widely used in modeling and reasoning uncertain information in real applications. Recently, a new perspective of modeling uncertain information with the negation of evidence was proposed and has attracted a lot of attention. Both the basic probability assignment (BPA) and the negation of BPA in the evidence theory framework can model and reason uncertain information. However, how to address the uncertainty in the negation information modeled as the negation of BPA is still an open issue. Inspired by the uncertainty measures in Dempster–Shafer evidence theory, a method of measuring the uncertainty in the negation evidence is proposed. The belief entropy named Deng entropy, which has attracted a lot of attention among researchers, is adopted and improved for measuring the uncertainty of negation evidence. The proposed measure is defined based on the negation function of BPA and can quantify the uncertainty of the negation evidence. In addition, an improved method of multi-source information fusion considering uncertainty quantification in the negation evidence with the new measure is proposed. Experimental results on a numerical example and a fault diagnosis problem verify the rationality and effectiveness of the proposed method in measuring and fusing uncertain information.  相似文献   
119.
Entropy is a measure of uncertainty or randomness. It is the foundation for almost all cryptographic systems. True random number generators (TRNGs) and physical unclonable functions (PUFs) are the silicon primitives to respectively harvest dynamic and static entropy to generate random bit streams. In this survey paper, we present a systematic and comprehensive review of different state-of-the-art methods to harvest entropy from silicon-based devices, including the implementations, applications, and the security of the designs. Furthermore, we conclude the trends of the entropy source design to point out the current spots of entropy harvesting.  相似文献   
120.
A simplified linearized lattice Boltzmann method (SLLBM) suitable for the simulation of acoustic waves propagation in fluids was proposed herein. Through Chapman–Enskog expansion analysis, the linearized lattice Boltzmann equation (LLBE) was first recovered to linearized macroscopic equations. Then, using the fractional-step calculation technique, the solution of these linearized equations was divided into two steps: a predictor step and corrector step. Next, the evolution of the perturbation distribution function was transformed into the evolution of the perturbation equilibrium distribution function using second-order interpolation approximation of the latter at other positions and times to represent the nonequilibrium part of the former; additionally, the calculation formulas of SLLBM were deduced. SLLBM inherits the advantages of the linearized lattice Boltzmann method (LLBM), calculating acoustic disturbance and the mean flow separately so that macroscopic variables of the mean flow do not affect the calculation of acoustic disturbance. At the same time, it has other advantages: the calculation process is simpler, and the cost of computing memory is reduced. In addition, to simulate the acoustic scattering problem caused by the acoustic waves encountering objects, the immersed boundary method (IBM) and SLLBM were further combined so that the method can simulate the influence of complex geometries. Several cases were used to validate the feasibility of SLLBM for simulation of acoustic wave propagation under the mean flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号