首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19185篇
  免费   3319篇
  国内免费   1760篇
化学   13550篇
晶体学   182篇
力学   1046篇
综合类   71篇
数学   2095篇
物理学   7320篇
  2024年   42篇
  2023年   411篇
  2022年   726篇
  2021年   717篇
  2020年   774篇
  2019年   768篇
  2018年   740篇
  2017年   592篇
  2016年   978篇
  2015年   848篇
  2014年   1077篇
  2013年   1415篇
  2012年   1746篇
  2011年   1808篇
  2010年   1181篇
  2009年   1110篇
  2008年   1219篇
  2007年   1064篇
  2006年   1012篇
  2005年   807篇
  2004年   617篇
  2003年   435篇
  2002年   438篇
  2001年   338篇
  2000年   282篇
  1999年   396篇
  1998年   280篇
  1997年   298篇
  1996年   288篇
  1995年   247篇
  1994年   211篇
  1993年   216篇
  1992年   146篇
  1991年   161篇
  1990年   133篇
  1989年   100篇
  1988年   88篇
  1987年   71篇
  1986年   69篇
  1985年   54篇
  1984年   57篇
  1983年   30篇
  1982年   32篇
  1981年   24篇
  1980年   26篇
  1978年   13篇
  1976年   16篇
  1975年   15篇
  1973年   15篇
  1968年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
861.
A copper‐catalyzed cascade reaction of N‐H insertion and oxidative aromatization has been developed. 2‐Arylaminophenols have been prepared in moderate to high yields from the diazo substrates. Moreover, this newly established methodology allows efficient access to natural 1‐oxygenated carbazole alkaloids, such as glycozolicine and murrayafoline A.  相似文献   
862.
Five new ZnII complexes, namely [Zn3(L)6] ( 1 ), [Zn2(Cl)2(L)2(py)2] ( 2 ), [Zn2(Br)2(L)2(py)2] ( 3 ), [Zn(L)2(py)] ( 4 ), and [Zn2(OAc)2(L)2(py)2] ( 5 ), were prepared by the solvothermal reaction of ZnX2 (X?=Cl?, Br?, F?, and OAc?) salts with a 8‐hydroxyquinolinate ligand (HL) that contained a trifluorophenyl group. All of the complexes were characterized by elemental analysis, IR spectroscopy, and powder and single‐crystal X‐ray crystallography. The building blocks exhibited unprecedented structural diversification and their self‐assembly afforded one mononuclear, three binuclear, and one trinuclear ZnII structures in response to different anions and solvent systems. Complexes 1 – 5 featured four types of supramolecular network controlled by non‐covalent interactions, such as π???π‐stacking, C? H???π, hydrogen‐bonding, and halogen‐related interactions. Investigation of their photoluminescence properties exhibited disparate emission wavelengths, lifetimes, and quantum yields in the solid state.  相似文献   
863.
The title compounds, bis{μ‐N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine‐κ2N1:P}disilver bis(perchlorate) acetonitrile monosolvate, [Ag2(C18H17N2P)2](ClO4)2·CH3CN, (1), and bis{μ‐N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine‐κ2N1:P}bis[(nitrato‐κ2O,O)silver], [Ag2(C18H17N2P)2(NO3)2], (2), each contain disilver macrocyclic [Ag2(C18H17N2P)2]2+ cations lying about inversion centres. The cations are constructed by two N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine (DPP) ligands linking two Ag+ cations in a head‐to‐tail fashion. In (1), the unique Ag+ cation has a near‐linear coordination geometry consisting of one pyridine N atom and one P atom from two different DPP ligands. Two ClO4 anions doubly bridge two metallomacrocycles through Ag...O and N—H...O weak interactions to form a chain extending in the c direction. The half‐occupancy acetonitrile molecule lies with its methyl C atom on a twofold axis and makes a weak N...Ag contact. In (2), there are two independent [Ag(C18H17N2P)]+ cations. The nitrate anions weakly chelate to each Ag+ cation, leading to each Ag+ cation having a distorted tetrahedral coordination geometry consisting of one pyridine N atom and one P atom from two different DPP ligands, and two chelating nitrate O atoms. Each dinuclear [Ag2(C18H17N2P)2(NO3)2] molecule acts as a four‐node to bridge four adjacent equivalent molecules through N—H...O interactions, forming a two‐dimensional sheet parallel to the bc plane. Each sheet contains dinuclear molecules involving just Ag1 or Ag2 and these two types of sheet are stacked in an alternating fashion. The sheets containing Ag1 all lie near x = , , etc, while those containing Ag2 all lie near x = 0, 1, 2 etc. Thus, the two independent sheets are arranged in an alternating sequence at x = 0, , 1, etc. These two different supramolecular structures result from the different geometric conformations of the templating anions which direct the self‐assembly of the cations and anions.  相似文献   
864.
Flow‐induced structure formation is investigated with in situ wide‐angle X‐ray diffraction with high acquisition rate (30 Hz) using isotactic polypropylene in a piston‐driven slit flow with high wall shear rates (up to ≈900 s−1). We focus on crystallization within the shear layers that form in the high shear rate regions near the walls. Remarkably, the kinetics of the crystallization process show no dependence on either flow rate or flow time; the crystallization progresses identically regardless. Stronger or longer flows only increase the thickness of the layers. A conceptual model is proposed to explain the phenomenon. Above a certain threshold, the number of shish‐kebabs formed affects the rheology such that further structure formation is halted. The critical amount is reached already within 0.1 s under the current flow conditions. The change in rheology is hypothesized to be a consequence of the “hairy” nature of shish. Our results have large implications for process modelling, since they suggest that for injection molding type flows, crystallization kinetics can be considered independent of deformation history.

  相似文献   

865.
Raman spectra of iodine species confined in one‐dimensional elliptical channels of AlPO4‐11 (AEL) crystals have been studied from room temperature down to −196 °C. As temperature decreases, thermal fluctuations of individual iodine molecules confined in AEL channels are slowed down and they prefer to rotate to channel axis direction, which increases the population of iodine molecules along channel axis (i.e., lying molecules and chains). Such temperature‐driven orientation transformation of iodine molecules is found to be reversible upon heating up to room temperature. The experimental observations are in good agreement with our theoretical simulations by molecular dynamics on low density iodine‐filled AEL crystals. We thus provide a new way to modulate the orientation of iodine molecules in nanochannels, which may have implications in low‐temperature‐sensitive nanoscale devices. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
866.
Polymer network gel method combines the advantages of solid-phase method and liquid phase method, triggering acrylamide (AM) radical polymerization in aqueous solution and N, N′- methylene bis acrylamide (MBAM) active double bond cross-linking reaction, forming polymer chains to form a three-dimensional network. The polymer network space formed by the gel is bound and evenly distributed to the ions in the solution, thereby reducing the contact and aggregation of molecules and achieving the purpose of uniform particle size and small particle size. The principle diagram of network gel is shown in Figure. Using cubic zinc acetate and ammonium molybdate tetrahydrate as raw materials, cubic ZnMoO4 negative electrode materials were prepared with polymer network gel method. The polymer network gel method has various effects on the structure, morphology and electrochemical properties of materials. Besides, the calcination temperature and calcination time were also the key factors to the electrochemical properties of the materials. In this paper, the effects of the ratio of monomer and crosslinker, calcination temperature and calcination time on ZnMoO4 materials were studied by single variable method, the preparation process was optimized, and its characterization and electrochemical tests were carried out. After 100 cycles, the optimized ZnMoO4 electrode has a discharge capacity of 374.0 mAh· g?1, 332.5, 263.5 and 177.1 mAh · g?1 at current densities of 0.1, 0.5, 1.0 and 2.0 A g?1, respectively. The electrochemical results show that the optimized ZnMoO4 has high capacity, large rate capability and excellent cycle stability.  相似文献   
867.
Journal of Radioanalytical and Nuclear Chemistry - The waste LiCl–Li2O oxide reduction salt was solidified and transformed into sodalite by the spark plasma sintering method. Compared with...  相似文献   
868.
活性氧簇(ROS), 如过氧化氢, 在生物体内的各种生理和病理过程中发挥着重要作用. 生物体内活性氧簇水平的异常与多种疾病(炎症、 肿瘤和器官损伤等)密切相关, 使ROS监测成为研究和诊断这些疾病的重要工具. 目前, 实现活体内深组织中的活性氧簇成像仍然面临挑战. 本文设计并合成了一种响应型的19F磁共振成像(MRI)探针(Gd-DPBF), 并将其用于实现对活体内通用活性氧簇的检测和成像. 该探针由钆螯合物通过活性氧簇响应的芳香硼酸酯键与含氟砌块相连接构成. 体外和体内成像实验结果证实, 该探针可以实现在活体荷瘤小鼠中针对肿瘤中高表达的活性氧进行检测和成像, 展示了其在生物体内对活性氧簇相关生理过程进行深组织、 零生物背景成像方面的潜力.  相似文献   
869.
Kim  S. V.  Baikenov  M. I.  Ainabaev  A. A.  Ibishev  K. S.  Meiramov  M. G.  Grigorieva  V. P.  Ma  F. 《High Energy Chemistry》2022,56(3):201-207
High Energy Chemistry - Optimal conditions for producing ultrafine iron powder by combining the processes of electrolysis and high-voltage discharge have been determined. It has been established...  相似文献   
870.
Continuous microporous membranes are widely studied for gas separation, due to their low energy premium and strong molecular specificity. Porous aromatic frameworks (PAFs) with their exceptional stability and structural flexibility are suited to a wide range of separations. Main-stream PAF-based membranes are usually prepared with polymeric matrices, but their discrete entities and boundary defects weaken their selectivity and permeability. The synthesis of continuous PAF membranes is still a major challenge because PAFs are insoluble. Herein, we successfully synthesized a continuous PAF membrane for gas separation. Both pore size and chemistry of the PAF membrane were modified by ion-exchange, resulting in good selectivity and permeance for the gas mixtures H2/N2 and CO2/N2. The membrane with Br? as a counter ion in the framework exhibited a H2/N2 selectivity of 72.7 with a H2 permeance of 51844 gas permeation units (GPU). When the counter ions were replaced by BF4?, the membrane showed a CO2 permeance of 23058 GPU, and an optimized CO2/N2 selectivity of 60.0. Our results show that continuous PAF membranes with modifiable pores are promising for various gas separation situations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号