首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21658篇
  免费   4173篇
  国内免费   3208篇
化学   15745篇
晶体学   299篇
力学   1365篇
综合类   309篇
数学   2621篇
物理学   8700篇
  2024年   55篇
  2023年   386篇
  2022年   749篇
  2021年   774篇
  2020年   911篇
  2019年   895篇
  2018年   769篇
  2017年   736篇
  2016年   1016篇
  2015年   1092篇
  2014年   1330篇
  2013年   1637篇
  2012年   1979篇
  2011年   2064篇
  2010年   1486篇
  2009年   1503篇
  2008年   1603篇
  2007年   1399篇
  2006年   1312篇
  2005年   1099篇
  2004年   920篇
  2003年   698篇
  2002年   715篇
  2001年   617篇
  2000年   482篇
  1999年   420篇
  1998年   329篇
  1997年   332篇
  1996年   287篇
  1995年   241篇
  1994年   226篇
  1993年   161篇
  1992年   114篇
  1991年   131篇
  1990年   110篇
  1989年   78篇
  1988年   76篇
  1987年   64篇
  1986年   47篇
  1985年   35篇
  1984年   29篇
  1983年   28篇
  1982年   27篇
  1981年   19篇
  1980年   16篇
  1979年   6篇
  1976年   6篇
  1975年   8篇
  1959年   5篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
The development of noble-metal-free heterogeneous catalysts is promising for selective oxidation of aromatic alcohols; however, the relatively low conversion of non-noble metal catalysts under solvent-free atmospheric conditions hinders their industrial application. Now, a holey lamellar high entropy oxide (HEO) Co0.2Ni0.2Cu0.2Mg0.2Zn0.2O material with mesoporous structure is prepared by an anchoring and merging process. The HEO has ultra-high catalytic activity for the solvent-free aerobic oxidation of benzyl alcohol. Up to 98 % conversion can be achieved in only 2 h, to our knowledge, the highest conversion of benzyl alcohol by oxidation to date. By regulating the catalytic reaction parameters, benzoic acid or benzaldehyde can be selectively optimized as the main product. Analytical characterizations and calculations provide a deeper insight into the catalysis mechanism, revealing abundant oxygen vacancies and holey lamellar framework contribute to the ultra-high catalytic activity.  相似文献   
942.
Electrochemical sensing performance is often compromised by electrode biofouling (e.g., proteins nonspecific binding) in complex biological fluids; however, the design and construction of a robust biointerface remains a great challenge. Herein, inspired by nature, we demonstrate a robust polydopamine-engineered biointerfacing, to tailing zwitterionic molecules (i.e., sulfobetaine methacrylate, SBMA) through Michael Addition. The SBMA-PDA biointerface can resist proteins nonspecific binding in complex biological fluids while enhancing interfacial electron transfer and electrochemical stability of the electrode. In addition, this sensing interface can be integrated with tissue-implantable electrode for in vivo analysis with improved sensing performance, preserving ca. 92.0% of the initial sensitivity after 2 h of implantation in brain tissue, showing low acute neuroinflammatory responses and good stability both in normal and in Parkinson′s disease (PD) rat brain tissue.  相似文献   
943.
Fused-ring electron acceptors have made significant progress in recent years, while the development of fully non-fused ring acceptors has been unsatisfactory. Here, two fully non-fused ring acceptors, o-4TBC-2F and m-4TBC-2F, were designed and synthesized. By regulating the location of the hexyloxy chains, o-4TBC-2F formed planar backbones, while m-4TBC-2F displayed a twisted backbone. Additionally, the o-4TBC-2F film showed a markedly red-shifted absorption after thermal annealing, which indicated the formation of J-aggregates. For fabrication of organic solar cells (OSCs), PBDB-T was used as a donor and blended with the two acceptors. The o-4TBC-2F-based blend films displayed higher charge mobilities, lower energy loss and a higher power conversion efficiency (PCE). The optimized devices based on o-4TBC-2F gave a PCE of 10.26 %, which was much higher than those based on m-4TBC-2F at 2.63 %, and it is one of the highest reported PCE values for fully non-fused ring electron acceptors.  相似文献   
944.
Fungal meroterpenoids are a diverse group of hybrid natural products with impressive structural complexity and high potential as drug candidates. In this work, we evaluate the promiscuity of the early structure diversity-generating step in fungal meroterpenoid biosynthetic pathways: the multibond-forming polyene cyclizations catalyzed by the yet poorly understood family of fungal meroterpenoid cyclases. In total, 12 unnatural meroterpenoids were accessed chemoenzymatically using synthetic substrates. Their complex structures were determined by 2D NMR studies as well as crystalline-sponge-based X-ray diffraction analyses. The results obtained revealed a high degree of enzyme promiscuity and experimental results which together with quantum chemical calculations provided a deeper insight into the catalytic activity of this new family of non-canonical, terpene cyclases. The knowledge obtained paves the way to design and engineer artificial pathways towards second generation meroterpenoids with valuable bioactivities based on combinatorial biosynthetic strategies.  相似文献   
945.
Organic semiconductors (OSCs) materials are currently under intense investigation because of their potential applications such as organic field-effect transistors, organic photovoltaic devices, and organic light-emitting diodes. Inspired by the selenization strategy can promote anisotropic charge carrier migration, and selenium-containing compounds have been proved to be promising materials as OSCs both for hole and electron transfer. Herein, we now explore the anisotropic transport properties of the series of selenium-containing compounds. For the compound containing Se Se bond, the Se Se bond will break when attaching an electron, thus those compounds cannot act as n-type OSCs. About the different isomer compounds with conjugated structure, the charge transfer will be affected by the stacking of the conjugated structures. The analysis of chemical structure and charge transfer property indicates that Se-containing materials are promising high-performance OSCs and might be used as p-type, n-type, or ambipolar OSCs. Furthermore, the symmetry of the selenium-containing OSCs will affect the type of OSCs. In addition, there is no direct relationship between the R groups with their performance, whether it or not as p-type OSCs or n-types. This work demonstrates the relationship between the optoelectronic function and structure of selenium-containing OSCs materials and hence paves the way to design and improve optoelectronic function of OSCs materials.  相似文献   
946.
The use of gold nanoparticles as radiosensitizers is an effective way to boost the killing efficacy of radiotherapy while drastically limiting the received dose and reducing the possible damage to normal tissues. Herein, we designed aggregation-induced emission gold clustoluminogens (AIE-Au) to achieve efficient low-dose X-ray-induced photodynamic therapy (X-PDT) with negligible side effects. The aggregates of glutathione-protected gold clusters (GCs) assembled through a cationic polymer enhanced the X-ray-excited luminescence by 5.2-fold. Under low-dose X-ray irradiation, AIE-Au strongly absorbed X-rays and efficiently generated hydroxyl radicals, which enhanced the radiotherapy effect. Additionally, X-ray-induced luminescence excited the conjugated photosensitizers, resulting in a PDT effect. The in vitro and in vivo experiments demonstrated that AIE-Au effectively triggered the generation of reactive oxygen species with an order-of-magnitude reduction in the X-ray dose, enabling highly effective cancer treatment.  相似文献   
947.
An N-confused phlorin isomer bearing a dipyrrin moiety at the α-position of the confused pyrrole ring ( 1 ) was synthesized. PdII and BIII coordination at the peripheral prodigiosin-like moiety of 1 afforded the corresponding complexes 2 and 3 . Reflux of 2 in triethylamine (TEA) converted the meso-phenyl into the PdII-coordinating phenoxy group to afford 4 . Under the same reaction conditions, TEA was linked to the α-position of the dipyrrin unit in 3 as an N,N-diethylaminovinyl group to afford 5 . Furthermore, peripheral coordination of BIII in 3 and 5 improved the planarity of the phlorin macrocycle and thus facilitated the coordination of AgIII at the inner cavity to afford 3-Ag and 5-Ag , respectively. These results provide an effective approach for developing unique porphyrinoids through peripheral coordination.  相似文献   
948.
We present the discovery of a novel radical cation formed through one-electron oxidation of an N-heterocyclic carbene–carbodiimide (NHC–CDI) zwitterionic adduct. This compound possesses a distonic electronic structure (spatially separate spin and charge regions) and displays persistence under ambient conditions. We demonstrate its application in a redox-flow battery exhibiting minimal voltage hysteresis, a flat voltage plateau, high Coulombic efficiency, and no performance decay for at least 100 cycles. The chemical tunability of NHCs and CDIs suggests that this approach could provide a general entry to redox-active NHC–CDI adducts and their persistent radical ions for various applications.  相似文献   
949.
Lithium-ion batteries (LIBs) are widely used in cellphones, laptops, and electric cars owing to their high energy density and long operational lifetime. However, their further deployment in large-scale energy storage systems is restricted by the uneven distribution of lithium resources (~0.0017% (mass fraction, w) in the Earth's crust). Therefore, alternative energy storage systems composed of abundant elements are of urgent need. Recently, sodium-ion batteries (SIBs) have attracted significant attention and are considered to be a potential alternative for next-generation batteries owing to abundant sodium resources (~2.64% (w) of the Earth's crust), suitable potential (−2.71 V), and low cost. SIBs are similar to LIBs in terms of their physical and electrochemical properties. Previous studies have mainly focused on SIB storage materials, including hard carbon, alloys, and hexacyanoferrate, while the safety of SIBs remains largely unexplored. Similar to LIBs, the current electrolytes used in SIBs are mainly composed of flammable organic carbonate solvents (or ether solvents), sodium salts, and functional additives, which pose possible safety issues. Moreover, the chemical activity of sodium is much higher than that of lithium, leading to a higher risk of fire, thermal runaway, and explosion. To overcome this problem, herein we propose a fluorinated non-flammable electrolyte composed of 0.9 mol∙L−1 NaPF6 (sodium hexafluorophosphate) in an intermixture of di-(2, 2, 2 trifluoroethyl) carbonate (TFEC) and fluoroethylene carbonate (FEC) in a 7 : 3 ratio by volume. Its physical and electrochemical properties were studied by ionic conductivity, direct ignition, cyclic voltammetry, and charge/discharge measurements, demonstrating excellent flame-retarding ability and outstanding compatibility with sodium electrodes. The electrochemical tests showed that the Prussian blue cathode retained a capacity of 84 mAh∙g−1 over 50 cycles in the prepared electrolyte, in contrast to the rapid capacity degradation in a flammable conventional carbonate electrolyte (74 mAh∙g−1 with 57% capacity retention after 50 cycles). To test the practical application of the proposed electrolyte, a hard carbon anode was used and exhibited exceptional performance in this system. The enhancement mechanism was further verified by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning emission microscopy (SEM) investigations. Polycarbonate on the surface of the cathode played an important role for the studied electrolyte system. The polycarbonate may originate from FEC decomposition, which can enhance the ionic conductivity of the solid electrolyte interface (SEI) layer and reduce impedance. Hence, we believe that this proposed electrolyte may provide new opportunities for the design of robust and safe SIBs for next-generation applications.  相似文献   
950.
研究了吡啶酰胺双齿导向的钴催化1-萘胺衍生物的区域选择性碳氢键烷氧基化反应.研究发现不仅一元醇可以作为烷氧化剂在标准条件下较好地实现1-萘胺C(8)位的烷氧化反应,而且具有多重用途的脂肪二元醇以及低聚乙二醇,也可以以中等的收率得到相应的目标化合物,这可能是钴催化碳氢键活化构筑碳氧键的首次发现.此外,利用这个实验方法,以氘代甲醇为烷氧化试剂实现了同位素标记的8-烷氧基取代的1-萘胺衍生物的合成.通过控制实验,发现该反应中吡啶酰基是最佳的双导向基团,而且反应过程可能经历了单电子转移机理.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号