首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   778篇
  免费   8篇
  国内免费   1篇
化学   531篇
晶体学   5篇
力学   28篇
数学   83篇
物理学   140篇
  2019年   4篇
  2017年   6篇
  2016年   5篇
  2015年   7篇
  2014年   9篇
  2013年   43篇
  2012年   27篇
  2011年   36篇
  2010年   16篇
  2009年   13篇
  2008年   25篇
  2007年   25篇
  2006年   30篇
  2005年   43篇
  2004年   25篇
  2003年   24篇
  2002年   29篇
  2001年   29篇
  2000年   21篇
  1999年   9篇
  1998年   9篇
  1997年   8篇
  1996年   14篇
  1995年   11篇
  1994年   16篇
  1993年   13篇
  1992年   14篇
  1991年   12篇
  1990年   11篇
  1989年   7篇
  1988年   19篇
  1987年   11篇
  1986年   13篇
  1985年   13篇
  1984年   15篇
  1983年   11篇
  1982年   12篇
  1981年   9篇
  1980年   10篇
  1979年   11篇
  1978年   11篇
  1977年   20篇
  1976年   9篇
  1975年   7篇
  1974年   10篇
  1973年   6篇
  1972年   5篇
  1971年   6篇
  1970年   5篇
  1907年   3篇
排序方式: 共有787条查询结果,搜索用时 625 毫秒
31.
Infrared (4000–200 cm?1) and Raman (3500–300 cm?1 ) spectra are reported for metal(II) halide and thiocyanate 4-methylpyridine complexes of the following stoichiometries: (MX2(4-Mepy)2) {M = Mn, Co, Cu or Zn, X = Cl or Br; M = Mn, Ni or Zn, X = NCS}; (MX2(4-Mepy)4) {M = Mn, Fe, Co or Ni, X = Cl or Br; M = Mn, Fe, Co, W or Cu, X = NCS}. For a given series of isomorphous complexes there is a correlation between the sum of the differences between the liquid and ligand values of the ν1, ν2, ν3, ν4, ν5, ν6, ν7, ν8, ν9, ν10, ν12, ν13 and ν14 modes of 4-methylpyridine and the strength of the metal-nitrogen bond. Comparison of the shift values of pyridine and 4-methylpyridine complexes supports the suggestion that, unlike the situation in the pyridine complexes, back-donation from the metal to the ligand is unimportant in the 4-methylpyridine complexes.  相似文献   
32.
More than 100 samples of blue-green algae products (consisting of Aphanizomenon, Spirulina, and unidentified blue-green algae) in the form of pills, capsules, and powders were collected from retail outlets from across Canada. The samples were extracted with 75% methanol in water and centrifuged to remove solids. Aliquots of the extracts along with spiked blank sample extracts were sent to each participating laboratory and independently analyzed for microcystins by enzyme-linked immunosorbent assay (ELISA), protein phosphatase inhibition assay, and by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after sample cleanup using C18 solid-phase extraction. The results obtained by ELISA and LC-MS/MS agreed very well over a concentration range of about 0.5-35 microg/g. The colorimetric phosphatase results generally agreed with the other 2 methods. While the 2 biochemical assays measured total microcystin content compared with a standard of microcystin LR, the LC-MS/MS method measured specific microcystins (LA, LR, RR, YR) using external standards of these for identification and quantitation. Microcystin LR was found in all positive samples by LC-MS/MS. Microcystin LA was the only other microcystin found in the samples analyzed. These 2 microcystins represent essentially all the microcystins that were present in the extracts. Otherwise, the LC-MS/MS results would have been significantly lower than the results of the biochemical assays had other unknown microcystins been present.  相似文献   
33.
Several isomeric forms of the vinyl alcohol/water radical cation have been investigated by high-level ab initio molecular orbital theory calculations, including electron correlation effects. Of the ions considered here, the anti form of the ? O ?H ?O? bridged complex is calculated to be the lowest in energy, having a stabilization energy of 100 kJ mol?1 with respect to the dissociation products [CH2CHOH]+˙ and H2O. Although the isomeric ions may formally be represented as distonic ions, hydrogen-bridged ions and ion–dipole complexes, the only significant barrier separating the isomers appears to be the anti?syn isomerization barrier. However, in the ? O ?H ?O? bridged complex this barrier is found to be considerably lowered relative to the anti?syn isomerization barrier for the free vinyl alcohol radical cation.  相似文献   
34.
Analogous to the formation of CH(2)[(t-Bu)(2)C(6)H(2)O](2)P(Ph)(O(2)C(6)Cl(4)) (1), the new bicyclic tetraoxyphosphoranes CH(2)[(t-Bu)(2)C(6)H(2)O](2)P(Et)(O(2)C(6)Cl(4)) (3) and CH(2)[ClC(6)H(3)O](2)P(Ph)(O(2)C(6)Cl(4)) (4) were synthesized by the oxidative addition of the appropriate cyclic phosphines with o-tetrachlorobenzoquinone. For the formation of CH(2)[(t-Bu)(2)C(6)H(2)O](2)P(Ph)(O(2)C(2)Ph(2)) (2), a similar reaction was followed with the use of benzil (PhCOCOPh) in place of o-tetrachlorobenzoquinone. X-ray analysis of 1-3 revealed trigonal bipyramidal geometries and provided evidence for the first series of complexes in the absence of ring strain in which the least electronegative group, ethyl or phenyl, is located in an axial position, in violation of the electronegativity rule. Thus, the two oxygen-containing ring systems occupied two different sets of positions in the trigonal bipyramid (TBP) with the eight-membered rings at diequatorial sites. X-ray analysis of 4 revealed a trigonal bipyramidal geometry with electron-withdrawing chlorine substituents on each ring assumed the more conventional geometry with the rings occupying axial-equatorial positions and the phenyl group located in the remaining equatorial site. The fact that molecular mechanics calculations favorably reproduced the observed geometries suggests that a steric contribution associated with the ring tert-butyl groups for 1-3 is partly responsible in favoring diequatorial ring occupancy for the eight-membered ring. NMR data supported rigid pentacoordinated structures in solution at 23 degrees C. Phosphorane 1 crystallizes in the orthorhombic space group Fdd2 with a = 44.787(5) ?, b = 34.648(8) ?, c = 10.3709(9) ?, and Z = 16. Phosphorane 2 crystallizes in the orthorhombic space group Pna2(1) with a = 20.658(8) ?, b = 10.342(2) ?, c = 19.879(6) ?, and Z = 4. Phosphorane 3 crystallizes in the orthorhombic space group Pcmn with a = 9.807(2) ?, b = 16.632(4) ?, c = 23.355(3) ?, and Z = 4. Phosphorane 4 crystallizes in the monoclinic space group C2/c with a = 35.699(5) ?, b = 12.187(2) ?, c = 14.284(3) ?, beta = 107.08(1) degrees, and Z = 8. The final conventional unweighted residuals are 0.0395 (1), 0.0518 (2), 0.0540 (3), and 0.0868 (4).  相似文献   
35.
Spatially complex, temporally chaotic dynamics of N-coupled impact oscillators connected by a string are studied experimentally using a discrete measure of the motion for each of the masses. For N=8, a binary assignment of symbols, corresponding to whether or not the masses impact an amplitude constraint, is used to code the spatial pattern as a binary number and to store its change in time in a computer. A spatial pattern return map is then used to observe the change in spatial patterns with time. Bifurcations in spatial impact patterns are observed in this experiment. An entropy measure is also used to characterize the dynamics. Numerical simulation shows behavior similar to the experimental system.  相似文献   
36.
By combining results from a variety of mass spectrometric techniques (metastatle ion, collisional activation, collision-induced dissociative ionization, neutralization–reionization spectrometry and appearance energy measurements) and the classical method of isotopic labelling, a unified mechanism is proposed for the complex unimolecular chemistry of ionized 1,2-propanediol. The key intermediates involved are the stable hydrogen-bridged radical cations [CH2?C(H)? H…?O…?O(H)CH3]+˙, which were generated independently from [4-methoxy, 1-butanol]+˙ (loss of C2H4) and [1-methoxyglycerol]+˙ (loss of CH2O), [CH3? C?O…?H…?O(H)CH3]+˙ and the related ion-dipole complex [CH2?C(OH)CH3/H2O]+˙. The latter species serves as the precursor for the loss of CH3˙ and in this reaction the same non-ergodic behaviour is observed as in the loss of CH3˙ from the ionized enol of acetone.  相似文献   
37.
Composite metastable peaks are generated in the unimolecular fragmentations (i) [C3H5]+ → [C3H3]+ + H2 (flat-top upon flat-top) and (ii) [C4H9]+ → [C3H5]+ + CH4 (flat-top and gaussian). The measurement of appearance potentials and kinetic energy releases lead us to conclude, in agreement with earlier proposals, that in (i) the components can arise from the generation of the isomeric cyclopropenium and propargyl daughter cations. In (ii) the components are proposed to arise from the fragmentation of tert- and sec-butyl cations yielding allyl as the common daughter ion. The composite peak observed in the fragmentation (iii) [C3H4]+· → [C3H3]+ + H· is shown to be present only if the decomposing molecular ion is large enough to also produce [C6H8]2+ ions. The second component in (iii) then arises from the reaction [C6H8]2+ → [C6H6]2+ + H2.  相似文献   
38.
The results of some 3C and 2H labelling experiments plus some measurements of reaction thermochemistry and translational energy releases, permit a significant simplification of the mechanistic pathways by which [C3H7O]+ ions of structure fragment by loss of C2H4. The relationships between these ions and some of their isomeric forms are explored and clarified.  相似文献   
39.
Abstract— Ascorbic acid and ascorbate in chlorophyll ethanol solution were found to be fairly efficient quenchers of the chlorophyll triplet state; comparable to the efficiency of ascorbic acid as a quencher in aqueous pyridine solution.
It has been well established that ascorbic acid quenches the triplet state of chlorophyll in aqueous pyridine solution.(1,2) The bimolecular quenching constant, kQ , is very much less than that for O2 or quinine.(3,4)
Information regarding the quenching of the triplet state of chlorophyll by ascorbic acid in ethanolic solution is lacking. There has been some question as to whether ascorbic acid reduces photoexcited chloro-phyll-ethanolic solution because of its high oxidation potential, or because like the ascorbate ion, it acts only as a quencher; both ascorbic acid and ascorbate in high concentrations gave low quantum yields.(5) The quenching of the triplet state by ascorbic acid and ascorbate was determined by the flash-photolytic method.  相似文献   
40.
Pt(IV)-mediated addition of the sulfimide Ph2S = NH and the mixed sulfide/sulfimides o- and p-[PhS(=NH)](PhS)-C6H4 by the S=NH group to the metal-bound nitriles in the platinum(IV) complexes [PtCl4(RCN)2] proceeds smoothly at room temperature in CH2Cl2 and results in the formation of the heterodiazadiene compounds [PtCl4[NH=C(R)N=SR'Ph]2] (R' = Ph, R = Me, Et, CH2Ph, Ph; R' = o- and p-(PhS)C6H4; R = Et). While trans-[PtCl4(RCN)2] (R = Et, CH2Ph, Ph) reacting with Ph2S=NH leads exclusively to trans-[PtCl4[NH=C(R)N=SPh2]2], cis/trans-[PtCl4(MeCN)2] leads to cis/trans mixtures of [PtCl4[NH=C(Me)N=SPh2]2] and the latter have been separated by column chromatography. Theoretical calculations at both HF/HF and MP2//HF levels for the cis and trans isomers of [PtCl4[NH=C(Me)N=SMe2]2] indicate a higher stability for the latter. Compounds trans-[PtCl4[E-NH=C(R)N=SPh2]2] (R = Me, Et) and cis-[PtCl4[E-NH=C(Me)N=SPh2][Z-NH=C(Me)N=SPh2]] have been characterized by X-ray crystallography. The complexes [PtCl4[NH=C(R)N=SPh2]2] undergo hydrolysis when treated with HCl in nondried CH2Cl2 to achieve the amidines [PtCl4[NH=C(NH2)R]2] the compound with R = Et has been structurally characterized) and Ph2SO. The heterodiazadiene ligands, formed upon Pt(IV)-mediated RCN/sulfimide coupling, can be liberated from their platinum(IV) complexes [PtCl4[NH=C(R)N=SR'Ph]2] by reaction with Ph2PCH2CH2PPh2 (dppe) giving free NH=C(R)=SR'Ph and the dppe oxides, which constitutes a novel route for such rare types of heterodiazadienes whose number has also been extended. The hybrid sulfide/sulfimide species o- and p-[PhS(=NH)](PhS)C6H4 also react with the Pt(II) nitrile complex [PtCl2(MeCN)2] but the coupling--in contrast to the Pt(IV) species--gives the chelates [PtCl2[M-I=C(Me)N=S(Ph)C6H4SPh]]. The X-ray crystal structure of [PtCl2[M-I=C(Me)N=S(Ph)C6H4SPh-o]] reveals the bond parameters within the metallacycle and shows an unusual close interaction of the sulfide sulfur atom with the platinum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号